ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ПРОТОНПРОВОДЯЩИХ МЕМБРАН Российский патент 2009 года по МПК B01D71/62 C08L79/06 C08G73/18 C08G73/22 

Описание патента на изобретение RU2364439C1

Область техники, к которой относится изобретение

Изобретение относится к материалам для протонпроводящих мембран, в частности мембран для высокотемпературных топливных элементов и, более конкретно, касается полимерных композиций на основе бензимидазолзамещенных полибензазолов в качестве исходных материалов для изготовления вышеупомянутых мембран.

Уровень техники

В последнее время большая часть исследований в области протонпроводящих мембран для высокотемпературных топливных элементов сосредоточена на использовании комплексов основных полимеров с сильными кислотами в качестве материалов для таких мембран. Наибольшей популярностью среди полимеров для допированных мембран пользуются полибензимидазолы (ПБИ), и, в особенности, поли[2,2'-(м-фенилен)-5,5'-бибензимидазол] формулы (1a) (M.Rukikawa, K.Sanui. Prog. Polym. Sci., 25, 1463 (2000))

С целью получения допированных мембран с повышенной протонной проводимостью рядом исследовательских групп изучались ПБИ с различными химическими структурами (2), (3) (J.A.Asensio, S.Borros, P.Gomez-Romero. J. Polym. Sci., A40, 3703 (2002)), (4) (L.Xiao, H.Zhang, E.-W.Choe, et. al. Proc. of the Conference on Advanced Materials for PEM Fuel Cell Systems. Asilomar, CA, USA, Poster abstract 34 (2003); J. Kiefer. Патент DE 10239701).

Общим недостатком ПБИ (2a) и (3a) является плохая растворимость в обычных растворителях - диметилацетамиде (ДМАА), диметилформамиде, диметилсульфоксиде (ДМСО) и других растворителях, наиболее пригодных для переработки полимеров в пленку. ПБИ формулы (4a) также становятся плохо растворимы в обычных растворителях при высоком содержании n-фениленовых фрагментов в полимерном звене, а при их низком содержании полимер сильно набухает и растворяется в фосфорной кислоте.

Известно (Патент РФ №2276160) применение бензимидазолзамещенных полибензимидазолов общей формулы

где: , , R=-, O,

в качестве материалов для высокотемпературных протонпроводящих мембран.

Недостатком таких полимеров является растворимость в 85%-ной фосфорной кислоте и, как следствие, неудовлетворительная механическая прочность в допированном виде.

Раскрытие изобретения

Задачей, решаемой заявленным изобретением, является получение протонпроводящих мембран с улучшенным комплексом свойств.

Технический результат состоит в повышении механической прочности протонпроводящих мембран в допированном виде при повышенных температурах.

Технический результат достигается тем, что полимерная композиция для изготовления протонпроводящих мембран состоит из смеси поли[2,2'-(м-фенилен)-5,5'-бибензимидазола] и бензимидазолзамещенного полибензазола с молекулярной массой 100000-200000 и структурной формулой элементарного звена

с массовой долей от 20% до 60%, или элементарного звена соструктурной формулой

с массовой долей от 20% до 80%.

Применение полимерных композиций на основе смеси бензимидазолзамещенных полибензазолов с поли[2,2'-(м-фенилен)-5,5'-бибензимидазолом] в различных соотношениях вместо индивидуальных бензимидазолзамещенных полибензазолов позволяет получать мембраны, обладающие более высокой механической прочностью при повышенных температурах. Кроме того, применение таких полимерных композиций позволяет проводить их допирование кислотой более высокой концентрации, чем для индивидуальных бензимидазолзамещенных полибензазолов, что приводит к получению мембран с более высокой протонной проводимостью. Таким образом, изобретение позволяет одновременно повысить протонную проводимость и механическую прочность протонпроводящих мембран.

В качестве растворителя в полимерной композиции может использоваться диметилацетамид, а также другие амидные растворители - диметилформамид, N-метилпирролидон. Содержание растворителя в композиции определяется используемым полимером и может составлять 90%-95% от количества смеси полимеров.

Осуществление изобретения

В качестве исходных материалов для изготовления мембран используют смеси бензимидазолзамещенного полибензазола формулы (1) и ПБИ формулы (1a) с массовым содержанием бензимидазолзамещенного полибензазола ПБИ формулы (1) 20-60% или бензимидазолзамещенного полибензазола ПБО формулы (2) и ПБИ формулы (1а) с массовым содержанием бензимидазолзамещенного полибензазола ПБО формулы (2) 20-80%.

Молекулярная масса бензимидазолзамещенных полибензазолов составляет 100000-200000. Применение полимеров молекулярной массой, превышающей 200000 приводит к получению мембран с еще большей механической прочностью.

Получение бензимидазолзамещенных полибензазолов осуществляют реакцией поликонденсации бис-бензоиленбензимидазола с 3,3'-диаминобензидином или 3,3'-дигидроксибензидином в 85%-ной полифосфорной кислоте. Полимеры выделяют из реакционной массы осаждением в воду.

Полимерная копозиция готовится путем смешения ПБИ формулы (1a) и бензимидазолзамещенного полибензазола формулы (1) или (2) в требуемом соотношении и растворителя (диметилацетамид, диметилформамид, N-метилпирролидон). Содержание растворителя в композиции определяется используемым полимером и может составлять 90%-95% от массы смеси полимеров. Полученная смесь премешивается при нагревании 80-90°С до образования раствора.

На чертеже приведены термомеханические кривые для рассматриваемых полимеров.

Изобретение иллюстрируется следующими примерами:

Пример 1. Синтез бис-бензоиленбензимидазола.

Бис-бензоиленбензимидазол получают по следующей реакции:

7,35 г О-фенилендиамина растворяют в 200 мл нитробензола и к полученному раствору порциями при интенсивном перемешивании добавляют 10 г диангидрида. Реакционную массу перемешивают при комнатной температуре в течение 1 часа, после чего кипятят с обратным холодильником и водоотделителем в течение 7 часов. Полученный раствор выдерживают ночь, после чего выпавший осадок отфильтровывают и высушивают до постоянной массы при 200°С и 0,1 мм рт.ст. Выход сырого продукта - 13 г (87%). Очистку вещества проводят перекристаллизацией из сухого ДМСО. Очищенный продукт сушат при 200°С и 0,1 мм рт.ст. в течение 3 ч. Очищенный продукт плавится в интервале 359-368°С. Выход чистого продукта - 5,2 г (35%).

Пример 2. Получение бензимидазолзамещенного полибензазола формулы (1).

Навески бис-бензоиленбензимидазола (5 г), полученного по методике, описанной в Примере 1, 3,3'-диаминобензидина (2,4435 г) и 85%-ной полифосфорной кислоты (100 г) загружают в двухгорлую колбу, снабженную механической мешалкой. Колбу продувают аргоном в течение 30 мин, после чего температуру реакционной массы доводят до 210°С, и реакцию ведут в токе аргона в течение 6 ч. Горячую реакционную массу выливают в воду, полученный полимер промывают водой и выдерживают в водном растворе аммиака (pH 10) в течение 5 ч для нейтрализации остаточной фосфорной кислоты. Затем полимер трижды промывают водой и высушивают при 150°С до постоянной массы. Выход полимера - 6,95 г. Приведенная вязкость - 1,24 дл/г (H2SO4, 25°С).

Полимер представляет собой волокна коричневого цвета.

Найдено, %: C=77,70, H=4,01, N=18,26.

Вычислено, %: C=77,92, H=3,89, N=18,19.

Молекулярная масса, определенная исследованием свободной диффузии макромолекул в сернокислотном растворе (Лавренко П.Н., Окатова О.В. Высокомолек. соед., А19, 2640 (1977)), составила 130000 (n=211).

В ИК-спектре присутствуют полосы колебаний C=C и C=N (1520-1587 см-1) бензимидазольных циклов. В диапазоне 2000-3800 см-1 проявляется широкая интенсивная область поглощения водородно-связанных и свободных валентных колебаний N-H и ароматических C-H. В области 700-800 см-1 проявляются полосы, характерные для дизамещенного бензольного кольца.

Пример 3. Получение бензимидазолзамещенного полибензазола формулы (2).

Синтез полимера формулы (2) осуществляют по методике, приведенной в Примере 2, из бис-бензоиленбензимидазола (5 г) и 3,3'-дигидроксибензидина (2,4663 г). Выход полимера - 7 г. Приведенная вязкость - 0,89 дл/г (H2SO4, 25°С).

Полимер представляет собой волокна коричневого цвета.

Найдено, %: C=77.51, H=3.90, N=13,41, O=5,42.

Вычислено, %: C=77,66, H=3,57, N=13,59, O=5,18.

Молекулярная масса определенная исследованием свободной диффузии макромолекул в сернокислотном растворе (Лавренко П.Н., Окатова О.В. Высокомолекулярные соединения., А19, 2640 (1977)) 100000 (n=161).

В ИК-спектре присутствуют полосы колебаний C=C и C=N (1533-1615 см-1) бензимидазольных циклов. Пик 103 6 см-1 характерен для C-O-C связи бензоксазольного цикла. В диапазоне 2000-3800 см-1 проявляется широкая интенсивная область поглощения водородно-связанных и свободных валентных колебаний N-H и ароматических C-H. В области 700-800 см-1 проявляются полосы, характерные для дизамещенного бензольного кольца.

Пример 4. Получение полимерной композиции.

Полимерная копозиция готовится путем смешения ПБИ формулы (1a) и бензимидазолзамещенного полибензазола формулы (1) в таком соотношении, чтобы массовая доля бензимидазолзамещенного полибензазола составляла 20-60%.

Пример 5. Получение полимерной композиции.

Полимерная копозиция готовится путем смешения ПБИ формулы (1a) и бензимидазолзамещенного полибензазола формулы (2) в таком соотношении, чтобы массовая доля бензимидазолзамещенного полибензазола составляла 20-80%.

Пример 6. Получение пленок на основе смесей полимеров.

2 г смеси ПБИ формулы (1a) и бензимидазолзамещенного полибензазола формулы (1) или бензимидазолзамещенного полибензазола формулы (2), взятых в требуемом соотношении, растворяют в 20 мл ДМАА с добавлением 0,2 г LiCl. Полученный раствор отфильтровывают через стеклянный фильтр №2, распределяют ровным слоем на стеклянной подложке и высушивают при постепенном повышении температуры от 50 до 160°С в течение 1 ч. Пленку снимают с подложки в токе воды, отмывают горячей водой от хлорида лития (3 раза по 1 ч) и сушат при 180°С до постоянной массы.

Пример 6. Получение мембраны допированием.

Пленку полимера помещают на 48 часов в водный раствор фосфорной кислоты требуемой концентрации. Извлеченную пленку высушивают фильтровальной бумагой до отсутствия на поверхности капельной влаги, а затем - над P2O5 в течение 24 часов.

В таблице 1 представлена сравнительная оценка устойчивости композитных мембран и чистых полибензазолов к фосфорной кислоте различной концентрации.

Таблица 1. Устойчивость чистых полибензазолов и их смесей к фосфорной кислоте. Полимер Максимальная концентрация фосфорной кислоты, % 1a >85 1 60 2 65 1+1a (60% ( )) 70 2+1a (80% ( )) 80 1+1a(20% ( )) 75 2+1a (20%( )) 85

В таблице 2 представлена сравнительная оценка количества фосфорной кислоты, абсорбируемой индивидуальным ПБИ формулы (1a) и его смесями с полибензазолами (1) и (2).

Таблица 2. Количество кислоты, абсорбируемое различными полибензазолами. Полимер Концентрация допирующей H3PO4, % Содержание H3PO4 в мембране, % 1 85 40 1+1a (60% (6)) 70 78 2+1а (80% (7)) 80 79 1+1a (20% (6)) 75 83 2+1a (20% (7)) 85 85

Из таблицы 2 следует, что смеси полибензазолов сорбируют большее количество кислоты по сравнению с чистым полибензимидазолом (1а)

На Фигуре 1 приведены термомеханические кривые для рассматриваемых полимеров. Сравнительная оценка теплостойкости чистых полибензазолов (1) и (2) (кривые 1 и 2) и их смесей с ПБИ формулы (1a (кривая 3 - (1+1a (50% (1)); кривая 4 - (2+1a (70% (2)) показывает, что при температурах выше 100°С полимеры (1) и (2) переходят в вязкотекучее состояние, в то время как их смеси с ПБИ формулы (1a) лишь ограниченно деформируются даже при более высоких температурах.

В таблице 3 представлен сравнительный анализ значений протонной проводимости для допированного ПБИ формулы (1а) и его смесей с полибензазолами (1) и (2). Из таблицы следует, что мембраны на основе смесей полимеров обладают более высокой протонной проводимостью в одинаковых условиях.

Таблица 3. Некоторые характеристики мембран на основе допированных полибензазолов. Полимер Протонная пароводимость, См/см (150°С) Плотность тока тестовой ячейки, мА/см2 (0,5 В, 170°С) 1,42×10-2 40 1+1a (50% (6)) 2,73×10-2 133 2+1a (70% (7)) 3,47×10-2 100

Изучение вольтамперных характеристик рассматриваемых мембран в тестовой водородно-воздушной топливной ячейке с активной поверхностью 2 см2 при атмосферном давлении газов, температуре 170°С и напряжении 0,5 В показало, что мембраны на основе смесей бензимидазолзамещенных полибензазолов и ПБИ обладают лучшими рабочими характеристиками по сравнению с чистым ПБИ формулы (1a) (табл.3).

Промышленная применимость

Изобретение может быть использовано при изготовлении протонпроводящих мембран, в частности мембран для высокотемпературных топливных элементов.

Похожие патенты RU2364439C1

название год авторы номер документа
ПРОТОНПРОВОДЯЩАЯ МЕМБРАНА 2008
  • Лейкин Алексей Юрьевич
  • Тарасевич Михаил Романович
  • Русанов Александр Львович
RU2382672C2
БЕНЗИМИДАЗОЛЗАМЕЩЕННЫЕ ПОЛИБЕНЗИМИДАЗОЛЫ - ИСХОДНЫЙ МАТЕРИАЛ ДЛЯ ИЗГОТОВЛЕНИЯ ПРОТОНПРОВОДЯЩИХ МЕМБРАН 2005
  • Лихачев Дмитрий Юрьевич
  • Лейкин Алексей Юрьевич
  • Русанов Александр Львович
RU2276160C1
ПРОТОНПРОВОДЯЩИЕ КОМПОЗИЦИОННЫЕ ПОЛИМЕРНЫЕ МЕМБРАНЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2005
  • Трофимов Борис Александрович
  • Могнонов Дмитрий Маркович
  • Ермакова Тамара Георгиевна
  • Кузнецова Надежда Петровна
  • Мячина Галина Фирсовна
  • Волкова Людмила Ивановна
  • Мазуревская Жанна Павловна
  • Бальжинов Сергей Александрович
  • Ленская Елена Валерьевна
  • Калинина Федосья Эрдэмовна
  • Ильина Ольга Васильевна
  • Фарион Иван Александрович
  • Санжиева Евгения Владимировна
RU2284214C1
СПОСОБ ПОЛУЧЕНИЯ ПРОТОНПРОВОДЯЩИХ ПОЛИМЕРНЫХ МЕМБРАН 2007
  • Ильина Анна Александровна
  • Пинус Илья Юрьевич
  • Ярославцев Андрей Борисович
RU2336604C1
МЕМБРАННО-ЭЛЕКТРОДНЫЙ БЛОК (МЭБ) ДЛЯ ТОПЛИВНОГО ЭЛЕМЕНТА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Тарасевич Михаил Романович
  • Модестов Александр Давидович
RU2331145C1
МЕМБРАННО-ЭЛЕКТРОДНЫЙ БЛОК (МЭБ) ДЛЯ КИСЛОРОДНО(ВОЗДУШНО)-ВОДОРОДНОГО ТОПЛИВНОГО ЭЛЕМЕНТА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Тарасевич Михаил Романович
  • Емец Виктор Владимирович
  • Богдановская Вера Александровна
RU2328797C1
МЕМБРАННО-ЭЛЕКТРОДНЫЙ БЛОК ТОПЛИВНОГО ЭЛЕМЕНТА 2011
  • Грузд Алексей Сергеевич
  • Галлямов Марат Олегович
  • Хохлов Алексей Ремович
RU2462797C1
ПРОТОНПРОВОДЯЩИЕ ПОЛИМЕРНЫЕ МЕМБРАНЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2005
  • Трофимов Борис Александрович
  • Морозова Людмила Васильевна
  • Могнонов Дмитрий Маркович
  • Маркова Марина Викторовна
  • Калинина Федосья Эрдэмовна
  • Михалева Альбина Ивановна
RU2285557C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА 2015
  • Гоффман Владимир Георгиевич
  • Гороховский Александр Владиленович
  • Горшков Николай Вячеславович
  • Слепцов Владимир Владимирович
  • Федоров Федор Сергеевич
  • Третьяченко Елена Васильевна
RU2600634C1
ПРОТОНПРОВОДЯЩИЙ ПОЛИМЕРНЫЙ КОМПОЗИТ 2009
  • Михайлова Антонина Михайловна
  • Колоколова Елена Викторовна
  • Никитина Людмила Владимировна
RU2400294C1

Реферат патента 2009 года ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ПРОТОНПРОВОДЯЩИХ МЕМБРАН

Изобретение относится к технологии изготовления протонпроводящих мембран, в частности мембран для высокотемпературных топливных элементов. Полимерная композиция для изготовления протонпроводящих мембран состоит из смеси поли[2,2'-(л<-фенилен)-5,5'-бибензимидазола] и бензимидазолзамещенного полибензазола с молекулярной массой 100000-200000 и структурной формулой элементарного звена (1), с массовой долей от 20% до 60% или со структурной формулой элементарного звена (2), с массовой долей от 20% до 80%. Использование данной композиции позволяет получать протонпроводящие мембраны с улучшенным комплексом свойств: повышенной протонной проводимостью и механической прочностью при повышенных температурах. 1 ил., 3 табл.

Формула изобретения RU 2 364 439 C1

Полимерная композиция для изготовления протонпроводящих мембран, состоящая из смеси поли[2,2'-(м-фенилен)-5,5'-бибензимидазола] и бензимидазолзамещенного полибензазола с молекулярной массой 100000-200000 и структурной формулой элементарного звена (1)

с массовой долей от 20 до 60%, или со структурной формулой элементарного звена (2)

с массовой долей от 20 до 80%.

Документы, цитированные в отчете о поиске Патент 2009 года RU2364439C1

БЕНЗИМИДАЗОЛЗАМЕЩЕННЫЕ ПОЛИБЕНЗИМИДАЗОЛЫ - ИСХОДНЫЙ МАТЕРИАЛ ДЛЯ ИЗГОТОВЛЕНИЯ ПРОТОНПРОВОДЯЩИХ МЕМБРАН 2005
  • Лихачев Дмитрий Юрьевич
  • Лейкин Алексей Юрьевич
  • Русанов Александр Львович
RU2276160C1
DE 10239701, 11.03.2004
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
ЛЕЙКИН А.Ю
и др
"Протонпроводящие мембраны на основе допированных систем", Высокомолекулярные соединения, серия А и Б, т.48, №6, 2006, с.1032-1040.

RU 2 364 439 C1

Авторы

Лейкин Алексей Юрьевич

Лихачев Дмитрий Юрьевич

Русанов Александр Львович

Даты

2009-08-20Публикация

2008-01-10Подача