Изобретение относится к металлургии титановых сплавов, содержащих в качестве основы титан с заданным соотношением легирующих и примесных элементов и предназначено для использования в атомном энергомашиностроении при производстве оборудования и корпусных конструкций стационарных и транспортных ядерных энергетических установок (ЯЭУ).
Известны конструкционные титановые материалы, применяемые в машиностроительных отраслях промышленности (например, титановые сплавы типа ВТ, ОТ и ПТ, а также другие аналоги), указанные в научно-технической и патентной литературе [1-4]. Однако известные сплавы применительно к реакторному оборудованию не удовлетворяют требованиям по механическим и эксплуатационным свойствам и их стабильности при кратковременном и длительном статическом и циклическом нагружениях, а также требованиям по деформационной способности этих материалов в условиях нейтронного облучения. Все это приводит к снижению эксплуатационной надежности и промышленной, в т.ч. радиационно-экологической безопасности применяемого реакторного оборудования в процессе его длительной эксплуатации в составе стационарных и транспортных ЯЭУ.
Наиболее близким к заявляемой композиции по базовому химическому составу и функциональному назначению компонентов является титановый сплав марки ВТ-14 [1], содержащий в своем составе легирующие и примесные элементы в следующем соотношении, в мас.%:
Данную марку сплава в соответствии с требованиями действующей НТД и по данным ряда работ [1-5] рекомендуется использовать в различных отраслях промышленности и народного хозяйства в качестве машиноподелочного конструкционного материала при производстве серийного оборудования общетехнического назначения.
При этом известный сплав характеризуется недостаточно высоким уровнем механических и эксплуатационных свойств, таких как кратковременная и длительная прочность, ударная вязкость, сопротивление усталости, деформационная способность в условиях нейтронного облучения флюенсом 5·1020 н/см2, а также повышенная склонность к наведенной радиоактивности.
Техническим результатом настоящего изобретения является создание малоактивируемого и радиационностойкого титанового сплава, обладающего более высокими значениями кратковременной и длительной прочности, сопротивления усталости, деформационной способности после нейтронного облучения флюенсом до 5·1020 н/см2, а также пониженной склонностью к наведенной радиоактивности. Технический результат достигается в результате того, что в состав известного сплава, содержащего алюминий, ванадий, молибден, цирконий, кремний, углерод, кислород, азот и титан дополнительно введены вольфрам и церий при следующем соотношении компонентов, в мас.%:
при этом:
- суммарное содержание ванадия и молибдена не должно превышать 3,5%;
- суммарное содержание циркония и кремния не должно превышать 0,15%;
- суммарное содержание кислорода и азота не должно превышать 0,13%.
Соотношение указанных легирующих и примесных элементов выбрано таким, чтобы заявляемая композиция обеспечивала формирование наиболее оптимального структурного состояния и заданный уровень служебных свойств, позволяющих существенно повысить эксплуатационную надежность и ресурс реакторного оборудования.
Введение в заявляемый сплав микролегирующих и модифицирующих добавок вольфрама и церия в указанном соотношении с другими легирующими элементами и, в первую очередь, с алюминием, ванадием и молибденом способствует не только повышению его структурной стабильности и радиационной стойкости в условиях длительного воздействия нейтронного облучения, но и обеспечивает более интенсивный спад наведенной радиоактивности внутриреакторного и корпусного оборудования, выводимого из эксплуатации. При этом, как показали результаты наших исследований [6-11], происходит более равномерное распределение легирующих элементов и избыточных фаз по всему сечению крупногабаритных поковок и сложнопрофильных полуфабрикатов, металл эффективнее очищается от вредных примесей и газов, более активно идет формирование мелкозернистой структуры с равноосной формой зерна, тоньше и чище становятся границы зерна, увеличивается прочность межкристаллитной связи, что в целом обеспечивает значительное повышение пластичности и вязкости как основного металла, так и сварных соединений. Заметно снижается склонность сплава к структурной анизотропии и существенно улучшается его технологичность на стадии металлургического передела, что повышает выход годного при промышленном производстве сортового и листового проката, а также крупногабаритных поковок. Введение модифицирующих добавок вольфрама и церия менее указанных в формуле изобретения значений снижает эффективность их положительного влияния и не приводит к заметному улучшению структурно-чувствительных характеристик работоспособности материала в процессе длительной эксплуатации в условиях реакторного облучения. Введение вольфрама и церия более указанных в формуле изобретения значений вызывает образование в структуре металла хрупких интерметаллических соединений, что приводит к потере запаса пластичности сплава и снижению его сопротивления хрупким разрушениям.
Ограничение содержания в заявляемой композиции ванадия и молибдена, как твердорастворных упрочняющих элементов в указанном соотношении с вольфрамом и церием, а также ограничение суммарного содержания вредных примесей внедрения кислорода и азота в сочетании с термодинамически активными Zr и Si, во многом влияющими на процесс кристаллизации расплава, способствует формированию более однородной и мелкозернистой структуры и заданного уровня физико-механических свойств, предопределяющих высокую деформационную способность металла в условиях нейтронного облучения.
Фрактографический анализ поверхности изломов облученных образцов методом сканирования на растровом электронном микроскопе показал [9-11], что в заявляемом сплаве доля вязкой составляющей в зоне разрушения металла заметно возрастает, по сравнению с известным составом. Несоблюдение указанных в формуле изобретения количественных соотношений снижает сопротивление металла радиационному охрупчиванию под действием высокодозного нейтронного облучения и отрицательно влияет на весь комплекс прочностных и деформационных характеристик металла.
Таким образом, полученный более высокий уровень механических и эксплуатационных свойств и высокая деформационная способность материала в условиях реакторного облучения достигаются комплексным модифицированием заявляемой композиции в указанном соотношении с другими элементами. сбалансированным химическим и фазовым составом, а также нормированным содержанием вводимых микролегирующих добавок.
В ЦНИИ КМ «Прометей» совместно с другими предприятиями отрасли и в соответствии с планом проводимых научно-исследовательских разработок в рамках федеральных целевых научно-технических программ [12, 13] выполнен необходимый комплекс лабораторных, расчетных и опытно-промышленных работ по выплавке, пластической и термической обработкам создаваемой марки сплава. Металл выплавлялся в вакуумных гарнисажных электропечах с магнитоуправляемой дугой с последующей обработкой на кузнечно-прессовом оборудовании мощностью 6000 т. Были изготовлены полуфабрикаты в виде кольцевых поковок массой до 500 кг, из которых вырезали образцы для исследования механических и эксплуатационных свойств.
Химический состав исследованных материалов, а также результаты определения основных механических и эксплуатационных свойств представлены в таблицах 1 и 2.
Ожидаемый технико-экономический эффект применения разработанного титанового сплава в машиностроительных отраслях промышленности и народного хозяйства выразится в повышении эксплуатационной надежности и ресурсных характеристик, а также радиационно-экологической безопасности использования корпусных конструкций современных реакторных установок атомной и термоядерной энергетики за счет повышения уровня механических и эксплуатационных свойств, деформированной способности после нейтронного облучения, а также снижения склонности к наведенной радиоактивности.
ЛИТЕРАТУРА
1. ГОСТ 19807 Титан и сплавы титановые деформируемые (марки), Госстандарт, 1991 - прототип.
2. ОСТ1.92077 Сплавы титановые (марки).
3. Б.Б.Чечулин, С.С.Ушков и др. Титановые сплавы в машиностроении, Л.: изд-во «Машиностроение», 1977.
4. С.Г.Глазунов, В.Н.Моисеев. Конструкционные титановые сплавы, М.: изд-во «Металлургия», 1974.
5. И.В.Горынин, В.В.Рыбин, С.С.Ушков и др. Титановые сплавы как перспективный реакторный материал. Сб. статей «Радиационное материаловедение и конструкционная прочность реакторных материалов», изд-е ЦНИИ КМ «Прометей», - СПб, 2002.
6. С.С.Ушков, В.А.Межонов, О.А.Кожевников и др. Применение титановых сплавов для корпусов водо-водяных реакторов перспективных атомных энергетических установок. - Материалы 7-й международной научно-технической конференции «Проблемы материаловедения при проектировании, изготовлении и эксплуатации оборудования АЭС». С-Пб., 2002.
7. И.В.Горынин, С.С.Ушков, В.А.Семенов и др. Модернизация, повышение надежности и ресурса реакторных конструкций атомных электростанций. - Материалы международной научно-технической конференции по реакторному материаловедению. - Киев, 2006.
8. С.С.Ушков, В.А.Межонов, О.А.Кожевников и др. Перспективы применения малоактивируемых титановых сплавов в сварных конструкциях атомных энергетических установок. - Сб. статей. «Вопросы материаловедения» №3, изд-е ЦНИИ КМ «Прометей». - С-Пб. 2007.
9. О.А.Кожевников, В.В.Рыбин, Е.В.Нестерова и др. Механические свойства, тонкая структура и микромеханизмы разрушения облученных нейтронами α-сплавов титана. - М.: журнал «Металловедение и термическая обработка металлов», №9, 1999.
10. И.В.Горынин, В.В.Рыбин, С.С.Ушков, О.А.Кожевников и др. «Радиационно-стойкие малоактивируемые титановые сплавы - новое поколение конструкционных материалов для реакторного оборудования ЯЭУ». - Материалы международной научно-технической конференции по реакторному материаловедению. - Киев, 2004.
11. О.А.Кожевников. Особенности радиационных повреждений титановых сплавов с различным содержанием примесей внедрения. В кн. «Радиационная физика металлов и сплавов». - Тбилиси, 1979.
12. Федеральная целевая научно-техническая программа «Национальная технологическая база», 2007.
13. Федеральная целевая научно-техническая программа «Разработка и исследование конструкционных материалов для термоядерной энергетики (международный термоядерный реактор проекта ИТЭР)», 2005.
название | год | авторы | номер документа |
---|---|---|---|
ТИТАНОВЫЙ СПЛАВ ДЛЯ СИЛОВЫХ КРЕПЕЖНЫХ ЭЛЕМЕНТОВ | 2009 |
|
RU2391426C1 |
ТИТАНОВЫЙ СПЛАВ ДЛЯ ТРУБОПРОВОДОВ И ТРУБНЫХ СИСТЕМ ТЕПЛООБМЕННОГО ОБОРУДОВАНИЯ АТОМНОЙ ЭНЕРГЕТИКИ | 2007 |
|
RU2351671C2 |
МАЛОАКТИВИРУЕМАЯ КОРРОЗИОННО-СТОЙКАЯ И РАДИАЦИОННО СТОЙКАЯ ХРОМИСТАЯ СТАЛЬ | 2006 |
|
RU2325459C2 |
Высокопрочный титановый сплав для корпусных конструкций атомного реактора с водяным теплоносителем | 2019 |
|
RU2702251C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ АКТИВНОЙ ЗОНЫ ВОДО-ВОДЯНОГО РЕАКТОРА НА МЕДЛЕННЫХ НЕЙТРОНАХ ИЗ МАЛОАКТИВИРУЕМОЙ ФЕРРИТНО-МАРТЕНСИТНОЙ СТАЛИ | 2009 |
|
RU2412255C1 |
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННО СТОЙКАЯ СТАЛЬ | 2007 |
|
RU2360992C1 |
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2001 |
|
RU2211878C2 |
ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ СИЛОВЫХ ЭЛЕМЕНТОВ МЕТАЛЛОБЕТОННЫХ КОНТЕЙНЕРОВ АТОМНОЙ ЭНЕРГЕТИКИ | 2004 |
|
RU2259419C1 |
ТВЭЛ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ (ВАРИАНТЫ) И ОБОЛОЧКА ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ | 2003 |
|
RU2262753C2 |
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2013 |
|
RU2515716C1 |
Изобретение относится к металлургии титановых сплавов, предназначенных для использования при производстве оборудования и в корпусных конструкциях стационарных и транспортных ядерных энергетических установок. Техническим результатом является создание сплава с улучшенным комплексом механических и служебных свойств, меньшей склонностью к наведенной активности, а также повышенной деформационной способностью в условиях нейтронного облучения, что обеспечивает повышение эксплуатационной надежности и ресурса реакторного оборудования ядерных энергетических установок. Предложен титановый сплав, содержащий в мас.%: алюминий 4,7-6,0, ванадий 1,0-2,0, молибден 0,8-2,0, вольфрам 0,01-0,10, цирконий 0,01-0,10, кремний 0,01-0,10 железо 0,10-0,25, церий 0,005-0,01, углерод 0,05-0,15, кислород 0,01-0,12, азот 0,01-0,04, титан - остальное, при этом суммарное содержание ванадия и молибдена не превышает 3,5%, суммарное содержание циркония и кремния не превышает 0,15%, суммарное содержание кислорода и азота не превышает 0,13%. 2 табл.
Титановый сплав для реакторного оборудования атомной и термоядерной энергетики, содержащий алюминий, ванадий, молибден, цирконий, кремний, железо, углерод, кислород и азот, отличающийся тем, что он дополнительно содержит вольфрам и церий при следующем соотношении компонентов, мас.%:
при этом суммарное содержание ванадия и молибдена не превышает 3,5%, суммарное содержание циркония и кремния не превышает 0,15%, а суммарное содержание кислорода и азота не превышает 0,13%.
Прибор для обнаружения колебания почвы | 1929 |
|
SU19807A1 |
Титан и сплавы титановые, деформируемые | |||
- Госстандарт, 1991 | |||
СПЛАВ НА ОСНОВЕ ТИТАНА И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2001 |
|
RU2211874C1 |
СПЛАВ НА ОСНОВЕ ТИТАНА | 1990 |
|
RU1746727C |
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор | 1923 |
|
SU2005A1 |
JP 11080866 A, 26.03.1999. |
Авторы
Даты
2009-09-20—Публикация
2008-02-21—Подача