МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННО СТОЙКАЯ СТАЛЬ Российский патент 2009 года по МПК C22C33/02 C22C38/38 C22C38/32 B82B1/00 

Описание патента на изобретение RU2360992C1

Изобретение относится к металлургии сталей, используемых в ядерной энергетике, в частности, для изготовления деталей активных зон атомных реакторов на быстрых нейтронах и оборудования термоядерных реакторов.

Известна жаропрочная при 550°С сталь [патент ЕР 0688883], которая содержит углерод, кремний, марганец, хром, молибден, вольфрам, ванадий, ниобий, азот, а также либо титан, или цирконий, или тантал, или гафний в следующем соотношении концентрации компонентов, мас.%: углерод - 0,01-0,30; марганец - 0,20-1,00; кремний - 0,02-0,80; хром - 5,0-18,0; молибден - 0,005-1,0; вольфрам - 0,20-3,50; ванадий - 0,02-1,0; ниобий - 0,01-0,50; азот - 0,01-0,25; титан и/или цирконий и/или тантал и/или гафний - 0,005-2,0; железо - остальное. Эта сталь отличается исключительно высоким сопротивлением ползучести при температуре 550°С и выше. Однако радиационные свойства указанной стали неизвестны, и она не может быть использована для изготовления элементов конструкции ядерного реактора на быстрых нейтронах без проведения дополнительных исследований.

Известна также малоактивируемая радиационно стойкая сталь [патент РФ №2135623, МКИ 6 С22С 38/52], содержащая углерод, кремний, марганец, хром, никель, ванадий, медь, молибден, кобальт, вольфрам, иттрий, ниобий, алюминий и железо при следующем соотношении компонентов, мас.%: углерод - 0,13-0,18; кремний - 0,20-0,35; марганец - 0,30-0,60; хром - 2,0-3,5; вольфрам - 1,0-2,0; ванадий - 0,10-0,35; молибден - 0,01-0,05; никель - 0,01-0,05; кобальт - 0,01-0,05; медь - 0,01-0,10; алюминий - 0,01-0,10; ниобий - 0,01-0,05; иттрий - 0,05-0,15; железо - остальное. Суммарное содержание никеля, кобальта, молибдена, ниобия и меди в этой стали составляет не более 0,2 мас.%, а отношение (V+0,3W)/C изменяется в пределах от 3 до 6. Сталь отличается низким уровнем наведенной активности, но не является жаропрочной при температуре, превышающей 500°С [М.В.Захаров, A.M.Захаров. Жаропрочные сплавы. М., Изд-во "Металлургия". 1972 г.].

Наиболее близкой по составу легирующих элементов к предлагаемой стали является малоактивируемая жаропрочная радиационно стойкая сталь [патент РФ №2211878, МКИ 7 С22С 38/32].

Эта сталь обладает низким уровнем наведенной радиоактивности и быстрым ее спадом после нейтронной экспозиции и сохраняет высокий уровень сопротивления охрупчиванию в интервале температур 270-400°С и высокий уровень жаропрочности до 650°С в условиях нейтронного облучения. Достижение этих характеристик осуществляется тем, что сталь содержит компоненты при следующем соотношении, мас.%: углерод - 0,10-0,21; кремний - 0,1-0,8; марганец - 0,5-2,0; хром - 10,0-13,5; вольфрам - 0,8-2,5; ванадий - 0,05-0,4; титан - 0,03-0,3; бор - 0,001-0,008; церий и/или иттрий в сумме - 0,001-0,10; цирконий - 0,05-0,2; тантал - 0,05-0,2; азот - 0,02-0,15; железо - остальное. При этом отношение суммарного содержания ванадия, титана, циркония и тантала к суммарному содержанию углерода и азота составляет от 2 до 9.

Однако жаропрочность этой стали недостаточна при температуре в активной зоне реактора 650-710°С, которая заложена для реакторов нового поколения.

Технической задачей изобретения является создание стали, обладающей высокими эксплуатационными характеристиками при высоких температурах и нейтронном облучении, а также низким уровнем наведенной радиоактивности и быстрым ее спадом.

Эта задача решается заявляемым изобретением через технический результат, который состоит в достижении высокого уровня сопротивления охрупчиванию в интервале температур 270-400°С и высокого уровня жаропрочности до температуры 710°С при сохранении низкого уровня наведенной радиоактивности и быстрого ее спада.

Этот технический результат достигается тем, что малоактивируемая жаропрочная радиационно стойкая сталь, содержащая углерод, кремний, марганец, хром, вольфрам, ванадий, иттрий титан, бор, цирконий, тантал, азот и железо, а также неизбежные примеси, дополнительно содержит равномерно распределенные в зернах стали наноразменые частицы оксида иттрия при следующем соотношении компонентов, мас.%:

Углерод 0,10-0,21 Кремний 0,1-0,8 Марганец 0,5-2,0 Хром 10,0-13,5 Вольфрам 0,8-2,5 Ванадий 0,05-0,4 Церий и/или иттрий в сумме 0,001-0,10 Цирконий 0,05-0,2 Тантал 0,05-0,2 Титан 0,03-0,3 Азот 0,02-0,15 Бор 0,001-0,008 Оксид иттрия 0,05-0,3 Железо Остальное,

при отношении суммарного содержания ванадия, титана, циркония и тантала к суммарному содержанию углерода и азота от 2 до 9.

Содержание примесей высокоактивируемых металлов - молибдена, ниобия, никеля, меди и кобальта в составе стали ограничивается значением не более 0,1 мас.%, что обеспечивает уменьшение активируемости под действием нейтронного облучения и увеличивает скорость спада наведенной активности стали.

Создание малоактивируемой, жаропрочной и радиационно стойкой стали осуществляется путем создания в структуре стали наноразмерных (размером не более нескольких десятков нанометров) частиц оксида иттрия, равномерно распределенных в объеме стали. При этом сохраняется комплексное легирование стали элементами с быстрым спадом наведенной радиационной активности и создается определенное соотношение между γ-стабилизирующими элементами (С, N, Mn, Ni) и α стабилизирующими элементами (Cr, W, V, Та, Ti, Zr, Mo, Nb и др.).

Высокий уровень жаропрочности достигается за счет создания в стали наноразмерных выделений оксида иттрия высокой объемной плотности и сохранения стабильной мартенситно-ферритной структуры с наличием упрочняющих твердый раствор элементов внедрения (С, N, В) и элементов замещения (W, V, Cr), упрочняющих карбидных (МС, M2С, М23С6 и др.), нитридных (MN, M2N) и карбонитридных (MCN) фаз, а также частиц фаз Лавеса типа Fe2 (W).

Высокое сопротивление низкотемпературному радиационному охрупчиванию (НТРО) достигается за счет ограниченного содержания в структуре стали первичного σ-феррита, предпочтительного выделения в структуре стали карбидов, нитридов и карбонитридов V, Ti, Та и Zr по сравнению с аналогичными соединениями хрома. Это обеспечивается регламентацией отношения суммы термодинамически активных элементов (V, Ti, Та и Zr) к сумме углерода и азота; дополнительное ограничение содержания в стали легкоплавких элементов (свинца, висмута, олова, сурьмы и мышьяка), а также серы, фосфора и кислорода в еще большей степени способствует увеличению сопротивления стали НТРО.

Во ФГУП ВНИИНМ были изготовлены экспериментальные образцы заявляемой стали, которые получали следующим образом. Методом центробежного распыления расплава в инертной атмосфере были получены мелкодисперсные, размером 0,042-0,2 мм, порошки стали матричного состава (без оксидов иттрия). Полученный порошок смешали с порошком оксида иттрия, размер частиц которого находился в диапазоне 2-40 нм. Полученную смесь подвергли механическому легированию в атмосфере аргона в вибрационном аттриторе. Полученный механически легированный порошок засыпали в стальную капсулу, которую загерметизировали электронно-лучевой сваркой в высоком вакууме. Капсулу с порошком сбрикетировали на прессе при температуре 1100°С в компактную заготовку, которую после механической обработки выдавили методом горячей экструзии при Т=1100°С в пруток диаметром 20 мм. Пруток обточили и расточили в трубную заготовку, из которой затем изготовили оболочечные трубы и плоские образцы.

Электронно-микроскопические исследования показали, что структура стали ЭК181 ДУО состоит преимущественно из ферритных зерен и небольшого количества мартенситных зерен, несмотря на то, что матричная сталь ЭК181 принадлежит к сталям мартенситного класса. По границам и в теле зерен присутствуют частицы оксидов размером от 5 до 50 нм. Кроме того, после термической обработки по границам зерен наблюдаются частицы, по своей морфологии напоминающие карбиды МС и М23С6.

На чертеже показаны значения твердости исходной заготовки из стали ЭК181, прутка и горячекатаной пластины из стали ЭК181 ДУО.

Видно, что значение твердости прутка из стали ЭК181 ДУО превышает значение твердости исходной заготовки из стали ЭК181 в 2 раза, что свидетельствует о существенном упрочнении стали ЭК181 присутствующими в структуре оксидными частицами.

Горячая прокатка приводит к некоторому снижению уровня твердости за счет прохождения процессов возврата при промежуточных и конечной термических обработках.

Испытания на длительную прочность образцов из заявляемой стали в сравнении со сталью-прототипом при температурах 650°С, нагрузка 140 МПа и 700°С, нагрузка 120 МПа показали существенное преимущество заявляемой стали перед известной, а именно, скорость ползучести заявляемой стали на два порядка ниже, чем для стали-прототипа. Скорость ползучести заявляемой стали составляет (4,48-6,08)·10-4 %/час, а скорость до разрушения стали-прототипа (2-6)·10-2 %/час.

Так как основы заявляемой стали и стали - прототипа близки, то полученные ранее данные расчета кинетики спада наведенной активности (мощности дозы - излучения) в сталях после предполагаемого облучения в термоядерном реакторе ДЕМО в течение 10 лет и последующей выдержки до 500 лет свидетельствуют о сохранении заявляемой сталью низкой наведенной активности стали-прототипа, особенно заметной после выдержки свыше 10 лет. После выдержки в течение 50 лет с заявляемой сталью можно работать без специальной защиты и отправлять ее на переплав для повторного использования.

Аналогичные расчеты, проведенные для спектра нейтронов реактора БН-600, показывают, что быстрый спад наведенной активности также делает ее безопасной через 50 лет выдержки.

Таким образом, заявляемая сталь может быть использована в ядерной энергетике для изготовления элементов активных зон атомных реакторов. Использование стали позволит: а) снизить загрязнение окружающей среды в период эксплуатации атомных энергетических установок нового поколения и после ее завершения, б) повторно использовать конструкционные материалы в народном хозяйстве. Этот эффект достигается более быстрым спадом наведенной активности стали при высоких свойствах ее жаропрочности и сопротивлению низкотемпературному радиационному охрупчиванию.

Похожие патенты RU2360992C1

название год авторы номер документа
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2013
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Орлов Александр Сергеевич
  • Ершов Николай Сергеевич
RU2515716C1
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2001
  • Солонин М.И.
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Бибилашвили Ю.К.
  • Голованов В.Н.
  • Кондратьев В.П.
  • Чернов В.М.
  • Шамардин В.К.
RU2211878C2
ТВЭЛ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ (ВАРИАНТЫ) И ОБОЛОЧКА ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ 2003
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Ватулин А.В.
  • Голованов В.Н.
  • Шамардин В.К.
  • Буланова Т.М.
  • Цвелев В.В.
  • Шкабура И.А.
  • Иванов Ю.А.
  • Форстман В.А.
RU2262753C2
БРИДИНГОВЫЙ ЭЛЕМЕНТ ДЛЯ ТЕРМОЯДЕРНОГО РЕАКТОРА СИНТЕЗА 2004
  • Ватулин А.В.
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Капышев В.К.
  • Коваленко В.Г.
  • Стребков Ю.С.
  • Чернов В.М.
RU2267173C1
МАЛОАКТИВИРУЕМАЯ КОРРОЗИОННО-СТОЙКАЯ И РАДИАЦИОННО СТОЙКАЯ ХРОМИСТАЯ СТАЛЬ 2006
  • Иолтуховский Александр Григорьевич
  • Велюханов Виктор Павлович
  • Зеленский Геннадий Константинович
  • Леонтьева-Смирнова Мария Владимировна
  • Погодин Владимир Павлович
  • Голованов Виктор Николаевич
  • Шамардин Валентин Кузьмич
  • Фураева Елена Владиславовна
  • Шевцов Аркадий Павлович
RU2325459C2
МАЛОАКТИВИРУЕМЫЙ КОРРОЗИОННО-СТОЙКИЙ СВАРОЧНЫЙ МАТЕРИАЛ 2008
  • Рыбин Валерий Васильевич
  • Карзов Георгий Павлович
  • Галяткин Сергей Николаевич
  • Щербинина Наталья Борисовна
  • Бурочкина Ирина Михайловна
  • Зубова Галина Евстафьевна
  • Лапин Александр Николаевич
RU2383417C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОНСТРУКТИВНЫХ ЭЛЕМЕНТОВ АКТИВНОЙ ЗОНЫ ВОДО-ВОДЯНОГО РЕАКТОРА НА МЕДЛЕННЫХ НЕЙТРОНАХ ИЗ МАЛОАКТИВИРУЕМОЙ ФЕРРИТНО-МАРТЕНСИТНОЙ СТАЛИ 2009
  • Агеев Валерий Семенович
  • Друженков Владимир Владимирович
  • Иолтуховский Александр Григорьевич
  • Леонтьева-Смирнова Мария Владимировна
  • Можанов Евгений Михайлович
  • Никитина Анастасия Андреевна
  • Потапенко Михаил Михайлович
  • Фураева Елена Владиславовна
  • Шевцов Аркадий Павлович
RU2412255C1
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ СТАЛЬ 1991
  • Писаревский Л.А.
  • Красных В.И.
  • Апарин Д.В.
  • Иванов Л.И.
  • Демина Е.В.
  • Прусакова М.Д.
  • Щенкова И.А.
  • Борисов В.П.
  • Мелькумов И.Н.
  • Касаточкина Т.Н.
  • Медведева Е.А.
  • Бибилашвили Ю.К.
RU2033461C1
МАЛОАКТИВИРУЕМАЯ ХРОМОМАРГАНЦЕВАЯ АУСТЕНИТНАЯ СТАЛЬ 2023
  • Литовченко Игорь Юрьевич
  • Полехина Надежда Александровна
  • Аккузин Сергей Александрович
  • Спиридонова Ксения Викторовна
  • Осипова Валерия Васильевна
  • Ким Анна Владимировна
RU2821535C1
МАЛОАКТИВИРУЕМЫЙ РАДИАЦИОННОСТОЙКИЙ СВАРОЧНЫЙ МАТЕРИАЛ 2002
  • Горынин И.В.
  • Рыбин В.В.
  • Карзов Г.П.
  • Щербинина Н.Б.
  • Козлов Р.А.
  • Бурочкина И.М.
  • Галяткин С.Н.
  • Зубова Г.Е.
  • Курсевич И.П.
  • Лапин А.Н.
  • Подкорытов Р.А.
RU2212323C1

Реферат патента 2009 года МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННО СТОЙКАЯ СТАЛЬ

Изобретение относится к металлургии жаропрочных сталей, используемых в ядерной энергетике, в частности, для изготовления деталей активных зон атомных реакторов на быстрых нейтронах и оборудования термоядерных реакторов. Сталь содержит углерод, кремний, марганец, хром, вольфрам, ванадий, церий и/или иттрий, титан, бор, цирконий, тантал, азот, равномерно распределенные в зернах наноразменые частицы оксида иттрия, железо и неизбежные примеси, при следующем соотношении компонентов, мас.%: углерод 0,10-0,21, кремний 0,1-0,8, марганец 0,5-2,0, хром 10,0-13,5, вольфрам 0,8-2,5, ванадий 0,05-0,4, церий и/или иттрий в сумме 0,001-0,10, цирконий 0,05-0,2, тантал 0,05-0,2, титан 0,03-0,3, азот 0,02-0,15, бор 0,001-0,008, оксид иттрия 0,05-0,3, железо и неизбежные примеси остальное. Отношение суммарного содержания ванадия, титана, циркония и тантала к суммарному содержанию углерода и азота составляет от 2 до 9. Повышаются эксплуатационные характеристики при высоких температурах и нейтронном облучении, а также обеспечивается низкий уровень наведенной радиоактивности и быстрый ее спад. 1 ил.

Формула изобретения RU 2 360 992 C1

Малоактивируемая жаропрочная радиационно стойкая сталь, содержащая углерод, кремний, марганец, хром, вольфрам, ванадий, церий и/или иттрий, титан, бор, цирконий, тантал, азот, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит равномерно распределенные в зернах наноразмерные частицы оксида иттрия при следующем соотношении компонентов, мас.%:
углерод 0,10-0,21 кремний 0,1-0,8 марганец 0,5-2,0 хром 10,0-13,5 вольфрам 0,8-2,5 ванадий 0,05-0,4 церий и/или иттрий в сумме 0,001-0,10 цирконий 0,05-0,2 тантал 0,05-0,2 титан 0,03-0,3 азот 0,02-0,15 бор 0,001-0,008 оксид иттрия 0,05-0,3 железо и неизбежные примеси остальное,


при отношении суммарного содержания ванадия, титана, циркония и тантала к суммарному содержанию углерода и азота от 2 до 9.

Документы, цитированные в отчете о поиске Патент 2009 года RU2360992C1

МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2001
  • Солонин М.И.
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Бибилашвили Ю.К.
  • Голованов В.Н.
  • Кондратьев В.П.
  • Чернов В.М.
  • Шамардин В.К.
RU2211878C2
ЖАРОПРОЧНАЯ РАДИАЦИОННО-СТОЙКАЯ СТАЛЬ 2001
  • Солонин М.И.
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Кондратьев В.П.
  • Голованов В.Н.
  • Шамардин В.К.
RU2218445C2
ТВЭЛ РЕАКТОРА НА БЫСТРЫХ НЕЙТРОНАХ (ВАРИАНТЫ) И ОБОЛОЧКА ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ 2003
  • Иолтуховский А.Г.
  • Леонтьева-Смирнова М.В.
  • Ватулин А.В.
  • Голованов В.Н.
  • Шамардин В.К.
  • Буланова Т.М.
  • Цвелев В.В.
  • Шкабура И.А.
  • Иванов Ю.А.
  • Форстман В.А.
RU2262753C2
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
US 5292384 A, 08.03.1994.

RU 2 360 992 C1

Авторы

Родин Виктор Никифорович

Сафонов Борис Владимирович

Чуканов Андрей Павлович

Агеев Валерий Семенович

Никитина Анастасия Андреевна

Леонтьева-Смирнова Мария Владимировна

Даты

2009-07-10Публикация

2007-12-17Подача