Изобретение относится к цветной металлургии, в частности металлургии титановых сплавов, обладающих высокой радиационной стойкостью и предназначенных для использования в атомной энергетике, в частности для изготовления корпусных конструкций реакторов стационарных атомных энергетических установок (АЭУ).
Титановые сплавы, благодаря своим уникальным свойствам: малоактивируемости, немагнитности, низкой плотности, высокой температуре плавления, хорошей коррозионной стойкости в различных средах, сохранению уровня механических свойств при нагреве до температуры 400°С, характерной для режимов эксплуатации водоохлаждаемых энергетических реакторов, предлагаются в настоящее время как конструкционные материалы для оборудования атомной энергетики.
Известен свариваемый высокопрочный сплав на основе титана, предназначенный для изготовления крупногабаритных сварных конструкций, используемых в судостроении и других отраслях промышленности [1] - сплав, содержащий мас. %: алюминий 4,5-6,2; ванадий 1,0-2,0; молибден 1,3-2,0; углерод 0,06-0,14; цирконий 0,05-<0,10; кислород 0,06-0,13; кремний 0,02-<0,10; железо 0,05-0,25; титан остальное, при выполнении следующих соотношений: [С]+[O2]≤0,25; [Mo]+0,5[V]≤3,0. Этот сплав имеет достаточно высокий уровень прочностных свойств на воздухе и в морской воде, но недостатком его являются низкие характеристики пластичности и ударной вязкости в исходном состоянии и после нейтронного облучения, а также довольно высокое содержание примесей Ni, Cu, Со, Cr, С, О, и N, присутствующих в титановом сплаве, которые приводят к охрупчиванию в условиях нейтронного облучения при флюенсе Ф≥1×1019 нейтрон/см2 с энергией тепловых нейтронов Е≥0,5 МэВ, что ограничивает срок службы сплава для корпусных конструкций атомного реактора.
Известен титановый сплав, предназначенный для использования при производстве оборудования и в корпусных конструкциях ядерных энергетических установок [2] - титановый сплав, содержащий в мас. %: алюминий 4,7-6,0; ванадий 1,0-2,0; молибден 0,8-2,0; вольфрам 0,01-0,10; цирконий 0,01-0,10; кремний 0,01-0,10; железо 0,10-0,25; церий 0,005-0,01; углерод 0,05-0,15; кислород 0,01-0,12; азот 0,01-0,04; титан - остальное, при этом суммарное содержание ванадия и молибдена не превышает 3,5%, суммарное содержание циркония и кремния не превышает 0,15%, суммарное содержание кислорода и азота не превышает 0,13%. Основным недостатком этого сплава является существенное упрочнение и значительное снижение вязкости разрушения в условиях нейтронного облучения за счет нестабильности его структурных составляющих. Известно, что при повреждающей дозе нейтронного облучения 0,3 СНА и более в сплавах титана, содержащих высокие концентрации Al и V, формируются наноразмерные кластеры, содержащие атомы алюминия до 8% и атомы ванадия до 22% [3,4], приводящие к снижению остаточной пластичности после облучения ≤ 2% и охрупчиванию сплава. При этом снижается работоспособность и эксплуатационная надежность реакторного оборудования в процессе длительной эксплуатации в составе АЭУ.
В качестве прототипа предложен малоактивируемый титановый сплав с высокой ударной вязкостью, предназначенный для ядерного реактора, содержащий мас. %: алюминий 3,5-5,5; ванадий 2,0-5,0; цирконий 2,0-5,0; хром 0,5-2,0; кремний 0,1-0,5; примеси включают никель не более 0,005; железо не более 0,03; кислород не более 0,15; углерод не более 0,02; медь не более 0,005; кобальт не более 0,0001 и водород не более 0,003 [6]. Для известного сплава отсутствуют сведения о прочностных и пластических свойствах сплава после нейтронного облучения. Не представлены данные по темпу снижения наведенной активности после нейтронного облучения, что делает необоснованным определение сплава как малоактивируемого. Содержание ванадия и хрома в составе сплава существенно ограничивают термическую стабильность, а также характеристики относительного удлинения и ударной вязкости разрушения при длительных сроках нейтронного облучения, из-за потери однородности первоначального твердого раствора α и β фаз, легированных ванадием. В сплаве также отсутствует регламентация содержания примесей, таких как азот, железо, кремний и углерод.
Техническим результатом является создание высокопрочного псевдо-α титанового сплава на основе композиции Ti-Al-Zr-Mo для изготовления корпусных конструкций атомных энергетических реакторов, обеспечивающего необходимый комплекс механических характеристик в исходном состоянии и после длительного нейтронного облучения.
Технический результат достигается за счет того, что высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным теплоносителем содержит алюминий, цирконий, молибден, железо, никель, кремний, хром, медь, кобальт, кислород, азот, углерод при следующем соотношении, мас. %:
При этом суммарное содержание алюминия и циркония находится в пределах %Al+%Zr=22,0÷25,0 суммарное содержание никеля, хрома, меди, кобальта и железа не превышает 0,02 мас. %, суммарное содержание углерода, кислорода и азота не превышает 0,05 мас. %.
Способ получения заявляемого титанового сплава, включает в себя двойной переплав в вакуумной дуговой печи расходуемого электрода с расчетным шихтовым составом, включающим высокочистый губчатый титан, с суммарным содержанием никеля, хрома, меди и кобальта и железа не более 0,02% и твердостью (НВ) не более 85.
Содержание алюминия в заявляемых пределах 4,0-4,5% обеспечивает высокий уровень кратковременной и длительной прочности, теплостойкость при температурах от +20°С до +350°С, обеспечивает стабильность характеристик крупногабаритных полуфабрикатов, в том числе сварных конструкций. Повышение содержания алюминия в сплаве выше 4,5% при облучении приводит к формированию α2-фазы и образованию кластеров в α-твердом растворе, обогащенных алюминием [4,5]. Содержание алюминия ниже 4,0% не обеспечивает требований по уровню прочности сплава.
Содержание циркония в заявляемых пределах 18,0-21,0% в сочетании с алюминием обеспечивает необходимый уровень прочностных характеристик, в том числе повышает прочность и предел ползучести. Цирконий повышает пластичность сплава и, как следствие, технологичность при горячей деформации крупногабаритных поковок. Контролируемый диапазон легирования цирконием определяет структурную стабильность сплава при длительном нейтронном облучении.
Содержание молибдена в заявленных пределах 1,5-2,5% обеспечивает необходимое количество β-фазы в сплаве и гарантирует высокий уровень прочностных характеристик сплава при минимальной потере пластичности при повышенных температурах. Превышение содержания молибдена выше 2,5% приводит к образованию нестабильных фаз α' и α'' и снижению пластичности сварных соединений [7].
Суммарное содержание никеля, хрома, меди, кобальта и железа понижено до 0,02% по сравнению с известным сплавом для обеспечения термической стабильности сплава в условиях длительного температурного и радиационного воздействия, так как эти элементы ограничивают устойчивость твердого раствора α и псевдо-α титановых сплавов за счет образования сегрегаций на границе зерен [8].
Суммарное содержание примесей элементов внедрения углерода, кислорода и азота не превышает 0,05 мас. %, как элементов существенно влияющих на пластичность сплава при температурах от 200°С до 350°С.
Промышленную применимость изобретения подтверждает пример его конкретного выполнения. Для исследования механических характеристик были изготовлены слитки трех составов сплава композиции Ti-Al-Zr-Mo методом двойного вакуумно-дугового переплава с последующим изготовлением опытных поковок габаритом 100×100×250 мм. Для изготовления слитков были использованы следующие шихтовые материалы: губка титановая марки Эк-1; лигатура молибдена; чистый алюминий; чистый электролитический цирконий.
Термическая обработка (отжиг) поковок проводилась по режиму: температура нагрева (800±10)°С →выдержка 2 часа →охлаждение на воздухе.
Химический состав опытных поковок из заявляемого титанового сплава и механические характеристики при температурах испытания 20 и 350°С представлены в таблицах 1 и 2. Механические характеристики определялись при растяжении образцов с рабочей длиной 15 мм и диаметром рабочей части 3 мм в соответствии с ГОСТ 1497-84 и ГОСТ 9651-84. Результаты механических испытаний усреднены по 3-м образцам.
Образцы из опытных сплавов подвергались нейтронному облучению в исследовательском реакторе МИР (ГНЦ НИИ АР, Россия) до флюенса Ф=3×1020 нейтрон/см2 с энергией En≥0,5 МэВ при температуре облучения +270°С в водяном теплоносителе с рН25°C=9÷10,5. Испытания на растяжение проводились на установке Instron 1362 с жесткостью 450 кН/мм со скоростью перемещения активного захвата v=1,0 мм/мин в соответствие с требованиями ГОСТ 28840-90. Результаты испытаний облученных материалов (предел текучести и относительное удлинение) при температурах испытаний 20 и 350°С представлены в таблице 3.
Ожидаемый технико-экономический эффект применения заявляемого титанового сплава определяется радиационной стойкостью при флюенсе Ф=3×1020 н/см2, высоким расчетным темпом снижения наведенной активности с достижением уровня радиационной безопасности после облучении в реакторе типа ВВЭР в течение 40 лет. Высокопрочный титановый сплав предназначен для атомных энергетических установок малой мощности с водяным теплоносителем с расчетным сроком эксплуатации не менее 60 лет.
ЛИТЕРАТУРА
1. Патент RU 2393258 Сплав на основе титана
2. Патент RU 2367697 Титановый сплав для реакторного оборудования атомной и термоядерной энергетики
3. Tahtinen S., Moilanen P., Singh B.N. - Effekt jf displacement dose and irradiation temperature jn tensile and fracture toughness properties of titanium alloys. Journal of Nuclear Materials. 2007, Vol. 360-370, Part A, c. 627-632
4. S.V. Rogozhkin - Study of Nanostructure of Experimental Ti-5Al-4V-2Zr Alloy - S.V. Rogozhkin, I.A. Schastlivaya, V.P. Leonov, A.A. Nikitin, N.N. Orlov, M.A. Kozodaev, A.A. Vasiliev, A.S. Orekhov - Inorganic Materials: Applied Research, 2017, Vol. 8, No. 6, pp. 848-860
5.1. A. Schastlivaya - Investigation of Radiation Resistance and Structural Stability of Titanium α-and Pseudo-α Alloys - I.A. Schastlivaya V.P. Leonov, A.V. Khanzhin, A.V. Obukhov, O.Yu. Makarov, and Yu.S. Kudrin - Inorganic Materials: Applied Research, 2017, Vol. 8, No. 6, pp. 944-950
6. Патент CN 106521239 High-impact-toughness low-activation titanium alloy for nuclear reactor
7. И.И. Корнилов - Титан - M: Изд. Наука,. 1975, с. 92
8. С.С. Ушков, И.Г. Власова, Н.Х. Киевская - Особенности микросегрегаций примесных и легирующих элементов в а- сплавах титана. Физика металлов и металловедение, т. 57, вып. 1, 1984, с 194-197.
название | год | авторы | номер документа |
---|---|---|---|
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2001 |
|
RU2211878C2 |
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННО СТОЙКАЯ СТАЛЬ | 2007 |
|
RU2360992C1 |
ТИТАНОВЫЙ СПЛАВ ДЛЯ РЕАКТОРНОГО ОБОРУДОВАНИЯ АТОМНОЙ И ТЕРМОЯДЕРНОЙ ЭНЕРГЕТИКИ | 2008 |
|
RU2367697C1 |
СТАЛЬ ДЛЯ КОРПУСОВ АТОМНЫХ РЕАКТОРОВ ПОВЫШЕННОЙ НАДЕЖНОСТИ И РЕСУРСА | 1999 |
|
RU2166559C2 |
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ | 2013 |
|
RU2515716C1 |
ТЕПЛОСТОЙКАЯ И РАДИАЦИОННО-СТОЙКАЯ СТАЛЬ | 2016 |
|
RU2634867C1 |
ТЕПЛОСТОЙКАЯ И РАДИАЦИОННО-СТОЙКАЯ СТАЛЬ | 2016 |
|
RU2633408C1 |
АУСТЕНИТНАЯ СТАЛЬ | 2003 |
|
RU2233906C1 |
МАЛОАКТИВИРУЕМЫЙ РАДИАЦИОННОСТОЙКИЙ СВАРОЧНЫЙ МАТЕРИАЛ | 2002 |
|
RU2212323C1 |
ТИТАНОВЫЙ СПЛАВ ДЛЯ СИЛОВЫХ КРЕПЕЖНЫХ ЭЛЕМЕНТОВ | 2009 |
|
RU2391426C1 |
Изобретение относится к металлургии сплавов на основе титана, предназначенных для изготовления корпусных конструкций атомных энергетических установок с водяным теплоносителем. Высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным теплоносителем содержит, мас. %: алюминий 4,0-4,5; молибден 1,5-2,5; цирконий 18,0-21,0; хром ≤ 0,003; никель ≤ 0,005, кобальт ≤ 0,0008; железо ≤ 0,014; кремний ≤ 0,006; углерод ≤ 0,006; азот ≤ 0,005; кислород < 0,05; медь ≤ 0,005; титан - остальное. Суммарное содержание алюминия и циркония составляет 22,0-25,0 мас.%, суммарное содержание никеля, хрома, меди, кобальта и железа не превышает 0,02 мас.% и суммарное содержание углерода, кислорода и азота не превышает 0,05 мас.%. Сплав характеризуется высокой прочностью и пластичностью в исходном состоянии и после длительного нейтронного облучения. 3 табл.
Высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным теплоносителем, содержащий алюминий, цирконий, молибден, кремний, хром и титан, отличающийся тем, что он дополнительно содержит железо, углерод, азот, кислород, никель, медь и кобальт, при следующем соотношении, мас. %:
при этом суммарное содержание алюминия и циркония составляет 22,0÷25,0 мас.%, суммарное содержание никеля, хрома, меди, кобальта и железа не превышает 0,02 мас. %, а суммарное содержание углерода, кислорода и азота не превышает 0,05 мас. %.
CN 106521239 A, 22.03.2017 | |||
ТИТАНОВЫЙ СПЛАВ ДЛЯ РЕАКТОРНОГО ОБОРУДОВАНИЯ АТОМНОЙ И ТЕРМОЯДЕРНОЙ ЭНЕРГЕТИКИ | 2008 |
|
RU2367697C1 |
СПЛАВ НА ОСНОВЕ ТИТАНА | 1992 |
|
RU2042726C1 |
ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ТИТАНА | 1991 |
|
SU1804139A1 |
WO 2018157142 A1, 30.08.2018 | |||
CN 107746993 A, 02.03.2018 | |||
CN 106191525 A, 07.12.2016. |
Авторы
Даты
2019-10-07—Публикация
2019-03-26—Подача