СПОСОБ ПОЛУЧЕНИЯ СЕЛЕКТИВНОГО ПОКРЫТИЯ Российский патент 2009 года по МПК F24J2/48 

Описание патента на изобретение RU2374570C1

Изобретение относится к гелиотехнике и может быть использовано в солнечных коллекторах, применяемых для тепло- и хладоснабжения жилых и промышленных зданий и установок. Селективное покрытие предназначено для нанесения на внешнюю поверхность поглощающей панели солнечного коллектора, преобразующего электромагнитное излучение Солнца в тепло.

Для того чтобы обеспечить эффективную работу панели солнечного коллектора относительный интегральный коэффициент поглощения поверхности коллектора в спектре излучения Солнца Ас должен приближаться к 1,0, а относительный интегральный коэффициент собственного излучения Е поверхности коллектора приближаться к нулевой величине. Чем выше значение отношения Ас/Е, тем эффективнее коллектор преобразует электромагнитное излучение Солнца в тепло.

Известен способ получения многослойного селективного покрытия для солнечного коллектора на внутренней поверхности цилиндра из алюминиевой фольги [Пат. RU №2133928 F24J 2/48. Многослойное селективное покрытие для солнечного коллектора и способ его получения. 1999. Ефремов Г.А., Хромушкин А.В., Минасбеков Д.А., Дударев Н.В., Дремлюга А.А., Дьячишин А.С.] путем напыления в вакууме слоя титана и последующего реактивного напыления в вакууме слоя нестехиометрического металлоида титана, получаемого путем реактивного напыления в атмосфере СО2 или N2 при парциальном давлении каждого газа в пределах (2,5-8,0)·10-2 Па, после чего в тлеющем разряде в вакууме в парах органических или элементоорганических соединений при парциальном давлении паров в пределах от 10 до 20 Па осаждают твердый аморфный углеродсодержащий материал.

Селективное покрытие, получаемое этим способом, имеет достаточно низкий коэффициент излучения Е≈0,035, но недостаточно высокий коэффициент поглощения в солнечном спектре Ас=0,94. Кроме того, данный способ получения селективного покрытия технологически весьма трудоемкий.

Наиболее близкими по технологической сущности и достижимому результату к предлагаемому способу являются многослойные селективные покрытия для солнечного коллектора, содержащие 2 слоя, один из которых выполнен в виде пленки оксида алюминия, поры которой заполнены частицами металла, а второй слой выполнен в виде пленки из двуокиси олова и расположен первым по ходу солнечных лучей, причем между двумя этими слоями расположен дополнительный связующий слой в виде гидратированной пленки Аl2О3 [А.с. СССР №668282, МПК F24J 2/48, 1979 в Пат. RU №2044964, МПК6 F24J 2/48. Многослойное селективное покрытие для солнечного коллектора. 1995. Дьячинин А.С., Дремлюга А.А., Саксонский В.А.]. Недостатками этих покрытий, полученных с помощью постоянного электрического тока, является их относительно низкая эффективность. Для покрытий данного типа отношение Ас/Е составляет примерно 4,0-5,0, что обусловлено относительно высоким значением коэффициента Е (при Ас≈0,90, Ас>0,20). К числу недостатков относится и трудоемкость получения селективного покрытия, обусловленная необходимостью нанесения второго слоя для увеличения коэффициента поглощения.

Задачей изобретения является упрощение технологии получения селективного покрытия.

Задача достигается тем, что способ получения селективного покрытия включает оксидирование алюминия и его сплавов в кислом растворе, электролитическое заполнение пор оксида высокодисперсным никелем, дополнительного заполнения пор высокодисперсным серебром, а при оксидировании и электролитическом заполнении пор используют переменный асимметричный ток, в котором средний катодный ток больше анодного и их соотношение составляет 2,5:1 и 5:1 при напряжении 8-15 В, электролит оксидирования содержит соли металлов Mn, Al, Ni при следующем соотношении компонентов, (г/л):

Серная кислота 180,0-200,0 Глицерин 1,0-3,0 Лимонная кислота 2,0-5,0 Сульфат алюминия 25,0-35,0 Сульфат никеля 25,0-35,0 Перманганат калия 2,0-3,0

Применение переменного асимметричного тока позволяет получить однослойное селективное покрытие, обладающее высокой поглощающей способностью.

Новизной в предлагаемом изобретении наряду с использованием переменного асимметричного тока является и то, что с целью усиления поглощающей способности полученного электрохимически селективного покрытия дополнительно доосаждали, серебро в поры покрытия путем его погружения на некоторое время (1-3 мин) в разбавленный раствор нитрата серебра.

Доосаждение серебра усиливает эффект чернения. Осаждение серебра происходит как за счет реакции контактного обмена с частицами металла, ранее осажденного в порах оксида, так и за счет восстановления его самой оксидной нестехиометрической пленкой оксида алюминия, имеющей недостаток по кислороду. Нестехиометрия оксидной пленки алюминия обусловлена тем, что ее формирование происходит за счет применения переменного асимметричного тока, в котором средний катодный ток больше среднего анодного.

Оксидирование проводили в растворе, содержащем серную и лимонную кислоты, глицерин, сульфат алюминия, перманганат калия и сульфат никеля, при комнатной температуре и соотношении плотностей катодного и анодного тока 2,5:1, напряжении 8-15 В в течение 30 мин. Ионы никеля и марганца вводили в электролит для формирования дефектной пленки алюминия, а наличие в электролите ионов алюминия ускоряет образование оксидной пленки.

Заполнение пор оксида высокодисперсным металлом (никелем) проводили электрохимически с использованием переменного асимметричного тока из раствора, содержащего сульфат никеля (NiSO4·7Н2О), сульфат магния (MgSO4·7Н2O), сульфат аммония ((NHO2·SO4), борную кислоту (Н3ВO3) при соотношении компонентов один к одному и плотностей катодного (iк) и анодного (ia) токов равным 5:1, напряжении 8-15 В, времени нанесения 20 мин.

По окончании процесса чернения (после заполнения пор оксида высокодисперсным металлом и выдержки в растворе серебра) для уплотнения оксида и упрочнения окраски изделия кипятили в течение 20 мин в деминерализованной воде.

Способ позволяет получать равномерное абсолютно черное покрытие с высокой адгезией к подложке и уменьшить его стоимость за счет снижения энергоемкости процесса.

Коэффициент излучения покрытия Е при температуре 100°С равен 0,03, а интегральный коэффициент поглощения покрытия, описанного типа в видимой части спектра, Ас=0,98. Эти данные получены на основании определения отражательной способности (R, %) с помощью USB-VIS-NIR-2000-спектрометра. Таким образом, эффективность преобразования солнечной энергии предлагаемым покрытием гораздо выше по сравнению с известными покрытиями.

Пример. Селективное поглощающее покрытие наносили на внутреннюю и внешнюю поверхность (одновременно) цилиндрических трубок площадью 50×102 мм2 и пластин размером 60×50×2 мм, изготовленных из сплавов алюминия марки AD 31. Перед оксидированием поверхность изделий готовили по стандартной в гальванотехнике методике. После чего изделия оксидировали в стеклянной ячейке объемом 500 мл; в качестве противоэлектродов использовали свинец или алюминий. Противоэлектроды в ванне окрашивания - никель. Оксидирование и окрашивание проводили при перемешивании раствора (воздушное или механическое). Все используемые растворы электролитов готовили на деминерализованной воде из реактивов марки «ч.д.а» или «х.ч.» путем последовательного растворения компонентов. Оксидирование и заполнение пор оксида алюминия осуществляли из растворов состава таблицы 1.

Содержание компонентов в селективном покрытии, определенное с помощью сканирующего микроскопа QUANTA 200 при ускоряющем напряжении 30 кВ (табл.2), подтверждает факт заполнения пор оксида алюминия высокодисперсным никелем и доосаждение серебра в порах оксида при погружении покрытия в раствор нитрата серебра.

Таблица 2 Данные рентгеноспектрального микроанализа с помощью электронного микроскопа Элемент Весовые, % Атомные, % кислород 47,97 61,3 алюминий 45,96 34,82 никель 10,29 04,06 серебро 01,84 00,35 сера 06,07 03,87

Отражательная способность покрытий (R, %) составила 0,98. Толщина покрытия равна 10 мкм, размер частиц покрытия лежит в интервале от 5 до 111,0 нм, а пор от 0,5 до 2 мкм.

Таким образом, полученное покрытие имеет оптимальные оптические свойства в солнечном спектре и оптимальную величину слоя, составляющего покрытие.

Применение предлагаемого селективного покрытия позволит создавать солнечные коллекторы с повышенными эффективностью и КПД преобразования солнечной энергии в тепловую энергию.

Похожие патенты RU2374570C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СЕЛЕКТИВНОГО ПОКРЫТИЯ 2009
  • Беспалова Жанна Ивановна
  • Клушин Виктор Александрович
  • Дьячишин Анатолий Сильвестрович
RU2393275C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА СТАЛЬ 2008
  • Беспалова Жанна Ивановна
  • Клушин Виктор Александрович
  • Смирницкая Инна Викторовна
  • Пятерко Ирина Алексеевна
RU2360043C1
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ ИЗ ОКСИДОВ МЕТАЛЛОВ НА СТАЛИ 2010
  • Беспалова Жанна Ивановна
  • Смирницкая Инна Викторовна
  • Храменкова Анна Владимировна
RU2449061C1
Способ получения оптически черного гибридного покрытия на стали 2023
  • Храменкова Анна Владимировна
  • Финаева Ольга Александровна
RU2805024C1
СПОСОБ ОКСИДИРОВАНИЯ ПОВЕРХНОСТИ СТАЛИ 2005
  • Беспалова Жанна Ивановна
  • Мирошниченко Людмила Геннадиевна
  • Ловпаче Юрий Адамович
  • Пятерко Ирина Алексеевна
  • Кудрявцев Юрий Дмитриевич
RU2293802C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОГО ПОКРЫТИЯ НА СТАЛИ 2010
  • Беспалова Жанна Ивановна
  • Смирницкая Инна Викторовна
  • Храменкова Анна Владимировна
RU2449062C1
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНЫХ ПОКРЫТИЙ НА СТАЛИ 2007
  • Гнеденков Сергей Васильевич
  • Хрисанфова Ольга Алексеевна
  • Синебрюхов Сергей Леонидович
  • Пузь Артем Викторович
  • Машталяр Дмитрий Валерьевич
  • Цветников Александр Константинович
RU2353716C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССОВ 2008
  • Беспалова Жанна Ивановна
  • Смирницкая Инна Викторовна
  • Фесенко Вячеслав Григорьевич
  • Кудрявцев Юрий Дмитриевич
RU2385969C1
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМЫХ ФТОРПОЛИМЕРНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ НИТИНОЛА 2006
  • Гнеденков Сергей Васильевич
  • Хрисанфова Ольга Алексеевна
  • Синебрюхов Сергей Леонидович
  • Цветников Александр Константинович
  • Пузь Артем Викторович
  • Гнеденков Андрей Сергеевич
RU2316357C1
СПОСОБ ПОЛУЧЕНИЯ БЕСПОРИСТОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ 2019
  • Орыщенко Алексей Сергеевич
  • Марков Михаил Александрович
  • Красиков Алексей Владимирович
  • Быкова Алина Дмитриевна
  • Беляков Антон Николаевич
RU2713763C1

Реферат патента 2009 года СПОСОБ ПОЛУЧЕНИЯ СЕЛЕКТИВНОГО ПОКРЫТИЯ

Изобретение относится к гелиотехнике и может быть использовано в солнечных коллекторах, применяемых для тепло- и хладоснабжения жилых и промышленных зданий и установок. Способ получения селективного покрытия включает оксидирование алюминия и его сплавов в кислом растворе, электролитическое заполнение пор оксида высокодисперсным никелем. Дополнительное заполнение пор осуществляют высокодисперсным серебром, а при оксидировании и электролитическом заполнении пор используют переменный асимметричный ток, в котором средний катодный ток больше анодного и их соотношение соответственно составляет 2,5:1 и 5:1 при напряжении 8-15 В, электролит оксидирования содержит соли металлов Mn, Al, Ni при следующем соотношении компонентов, (г/л):

Серная кислота 180,0-200,0 Глицерин 1,0-3,0 Лимонная кислота 2,0-5,0 Сульфат алюминия 25,0-35,0 Сульфат никеля 25,0-35,0 Перманганат калия 2,0-3,0

Изобретение должно обеспечить упрощение технологии получения селективного покрытия. 2 табл.

Формула изобретения RU 2 374 570 C1

Способ получения селективного покрытия включает оксидирование алюминия и его сплавов в кислом растворе, электролитическое заполнение пор оксида высокодисперсным никелем, отличающийся тем, что дополнительное заполнение пор осуществляют высокодисперсным серебром, а при оксидировании и электролитическом заполнении пор используют переменный асимметричный ток, в котором средний катодный ток больше анодного и их соотношение составляет 2,5:1 и 5:1 при напряжении 8-15 В, электролит оксидирования содержит соли металлов Mn, Al, Ni при следующем соотношении компонентов, г/л:
Серная кислота 180,0-200,0 Глицерин 1,0-3,0 Лимонная кислота 2,0-5,0 Сульфат алюминия 25,0-35,0 Сульфат никеля 25,0-35,0 Перманганат калия 2,0-3,0

Документы, цитированные в отчете о поиске Патент 2009 года RU2374570C1

МНОГОСЛОЙНОЕ СЕЛЕКТИВНОЕ ПОКРЫТИЕ ДЛЯ СОЛНЕЧНОГО КОЛЛЕКТОРА 1993
  • Дьячишин А.С.
  • Дремлюга А.А.
  • Саксонский В.А.
RU2044964C1
Способ изготовления многослойного селективного покрытия 1987
  • Гаврилина Анна Ивановна
  • Гухман Галина Александровна
  • Молчанова Валентина Павловна
  • Тарнижевский Борис Владимирович
SU1455174A1
Селективное покрытие 1989
  • Сеттарова Зера Сеит
  • Газиев Усман Хусанович
  • Исматуллаев Тулкун Кудратуллаевич
  • Дыскин Валерий Григорьевич
  • Харламов Валерий Анатольевич
  • Тендитный Владимир Андреевич
SU1698591A1
МНОГОСЛОЙНОЕ СЕЛЕКТИВНОЕ ПОКРЫТИЕ ДЛЯ СОЛНЕЧНОГО КОЛЛЕКТОРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1997
  • Ефремов Г.А.
  • Хромушкин А.В.
  • Минасбеков Д.А.
  • Дударев Н.В.
  • Дремлюга А.А.
  • Дьячишин А.С.
RU2133928C1
СПОСОБ ИЗГОТОВЛЕНИЯ СЕЛЕКТИВНОЙ ПОВЕРХНОСТНОЙ СТРУКТУРЫ НА ИЗДЕЛИЯХ ДЛЯ ЭФФЕКТИВНОГО ПОГЛОЩЕНИЯ СОЛНЕЧНОГО ИЗЛУЧЕНИЯ 1996
  • Беграмбеков Л.Б.
  • Вергазов С.В.
  • Захаров А.М.
RU2109229C1
US 4442829 A1, 17.04.1984.

RU 2 374 570 C1

Авторы

Беспалова Жанна Ивановна

Клушин Виктор Александрович

Сойер Вячеслав Григорьевич

Кудрявцев Юрий Дмитриевич

Даты

2009-11-27Публикация

2008-08-06Подача