СПОСОБ ОКСИДИРОВАНИЯ ПОВЕРХНОСТИ СТАЛИ Российский патент 2007 года по МПК C25D11/02 

Описание патента на изобретение RU2293802C1

Изобретение относится к способам создания коррозионно-стойкого самосмазывающегося оксидного покрытия на поверхности стали и может быть использовано для работы в узлах трения, гальванотехнике, радиоэлектронной и лакокрасочной промышленности.

Известен способ оксидирования поверхности перлитных сталей, заключающийся в химической обработке поверхности сталей раствором азотистой кислоты при концентрации 35-100 г/л при температуре 80-100°С в течение 1-6 часов [Пат. 2181790, С 23 C 11/00, С 23 С 22/00, 2002 г. Гусаров В.Т. (RU), Прохоров В.В. (RU), Лысенко A.A. (RU) и др. Способ оксидирования оборудования из перлитных сталей]. Недостатком этого способа является его многостадийность и длительность, так как азотистую кислоту сначала получают путем пропускания разбавленного раствора соли азотистой кислоты через Н+-катионитовый фильтр или путем введения в разбавленный раствор соли азотистой кислоты сильной кислоты из ряда: азотная, хлорная.

Наиболее близким по технической сущности и достижимому результату к предлагаемому способу является способ нанесения на поверхность стальных изделий оксида алюминия путем микроразрядного оксидирования переменным током в щелочном электролите [Пат. 2241076, 2004 г. Кусков В.Н. (RU), Кусков К.В. (RU). Способ электролитического нанесения покрытия на стальные изделия]. Недостатком этого способа являются высокие затраты электроэнергии, так как микроразрядное оксидирование проводят при напряжении 200-300 В, а также низкая пористость получаемого оксида, что не позволяет в последующем совмещать его с полимерным материалом. Кроме того, получаемое покрытие не является самосмазывающимся и не может быть использовано для работы в узлах трения.

Задачей изобретения является повышение коррозионной стойкости и износостойкости поверхности стали, снижение энергозатрат.

Задача достигается тем, что оксидный слой на поверхности стали формируется путем осаждения оксидов металла (меди, никеля, кобальта и кадмия) из кислого электролита, содержащего соль данного металла, оксид хрома (VI), 1,4-бутандиол, борную кислоту, калия хлорат (бертолетова соль), с помощью переменного асимметричного тока. Способ оксидирования поверхности стали, включающий оксидирование с использованием переменного тока в электролите, которое осуществляют с помощью асимметричного переменного тока в кислом электролите, содержащем соли меди, или никеля, или кобальта, или кадмия, пассиватор и стабилизатор при отношении катодной и анодной составляющих тока 1,5:1 или 2:1 при напряжении 15 или 20 В соответственно.

Использование переменного асимметричного тока позволяет в катодный полупериод осаждать из электролита на поверхность стали ионы металла, входящие в состав соли, содержащейся в растворе, а в анодный - окислять их до оксидов. Наличие в электролите оксида хрома (VI) и бертолетовой соли препятствует восстановлению ионов металла в катодный полупериод. Вследствие процессов циклирования на поверхности стали образуется переходной слой из шпинели, представляющий собой смесь двух оксидов (стали и наносимого из раствора оксида), что обеспечивает высокую адгезию получаемого покрытия.

Новизной в предлагаемом изобретении является не только способ осаждения оксида металла из электролита, но и состав электролита. Ни один из электролитов, используемых в гальванотехнике для нанесения электролитических покрытий, не содержит в своем составе оксид хрома (VI), бертолетову соль и 1,4-бутандиол.

Осаждение оксидов из электролита осуществляли на предварительно подготовленной поверхности плоских образцов из стали марки Ст3 размером 20×30×1 мм, по стандартной в гальванотехнике методике, электрохимической поляризацией переменным асимметричным током треугольной формы, частотой 50 Гц, с равной длительностью анодного и катодного импульсов, при определенном соотношении амплитуды токов анодного и катодного полупериодов, в кислом электролите, содержащем соль данного металла, оксид хрома (V1),бертолетову соль, борную кислоту и 1,4-бутандиол. Источником тока служил потенциостат ПИ-50-1, работающий в режиме гальваностата. Параметры тока задавали программатором.

В качестве катода использовали пластины из свинца в чехлах, размеры которых были в два раза больше размеров обрабатываемых образцов. Электролиз проводили при температуре 20-25°С и перемешивании раствора электромагнитной мешалкой. Длительность формирования оксидной пленки составляла 40-90 мин в зависимости от вида оксида.

Для экспериментальной проверки предлагаемого способа были сформированы оксидные пленки из оксида меди на поверхности стали Ст3.

Пример 1. Качественное покрытие из оксида меди получали из электролита следующего состава (при рН 1,3-1,8), гл-1:

Сульфат меди160-170Оксид хрома (VI)10,0-13,0Борная кислота30,01,4-бутандиол20-24

при отношении катодного и анодного составляющих тока 2:1, напряжении 20 В, температуре 20-25°С, времени электролиза 90 мин.

Состав вещества покрытия определяли методами рентгенофазового анализа, высокоразрешающей электронной микроскопии и хронопотенциометрии. Все эти методы подтвердили наличие оксида меди, осажденного из раствора, на поверхности стали. Фазовый состав вещества покрытия, в % (по массе): оксид меди (CuO) - 50; закись меди (Cu2O) - не более 10; CuFe2O4 - не более 10; остальное - медь. Толщина оксидного слоя составляла 7-12 мкм.

Пример 2. Качественное покрытие из оксида никеля получали из электролита следующего состава (при рН 3,5-4,0), гл-1:

Сульфат никеля100-120Хлорид никеля10,0-15,0Бертолетова соль (калия хлорат)15,0-20,0

при отношении катодного и анодного составляющих тока 1,5:1, напряжении 15 В, температуре 20-25°С, времени электролиза 60 мин.

Если в качестве противоэлектродов использовали никель, то в электролит вводили NiCl2 (хлорид никеля) для их депассивации. При использовании свинцовых противоэлектродов наличие этой соли в электролите необязательно, достаточно одного сульфата никеля.

Состав вещества покрытия определяли методами рентгенофазового анализа, высокоразрешающей электронной микроскопии и хронопотенциометрии. Все эти методы подтвердили наличие оксидов никеля (NiO и Ni2O3), осажденного на поверхности стали. Фазовый состав вещества, в % (по массе): смесь оксидов никеля - 57; шпинель (NiFe2O4) - не более 14; остальное - высокодисперсный никель.

Пример 3. Качественное покрытие из оксида кадмия получили из электролита следующего состава (при рН 1,5-2,0), г/л-1:

Сульфат кадмия350-380Оксид хрома (VI)15,0-20,0Борная кислота20,01,4-бутандиол15,0-20,0

при отношении катодного и анодного составляющих тока 2:1, напряжении 20 В, температуре 20-25°С, времени электролиза 60 мин.

Состав вещества покрытия определяли методом рентгенофазового анализа с помощью рентгеновского дифрактометра общего назначения Дрон-2,0, использовали фильтрованное никелем излучение медного антикатода CuKα. Этот метод подтвердил наличие в покрытии оксида кадмия (CdO); CdFe2O4 и кадмия. Толщина оксидного слоя 8-10 мкм.

Пример 4. Качественное покрытие из оксида кобальта получали из электролита следующего состава (рН 1,5-2,0), г/л:

Сульфат кобальта300-350Оксид хрома15,0-20,0Борная кислота30,0Бутанол20,0-20,5 мл/л

При отношении катодного и анодного составляющих тока 2:1, при напряжении 20 В, температуре 20-25°С, времени электролиза 40 мин.

Состав вещества покрытия определяли методом импульсной инверсионной хронопотенциометрии. Анализы показали, что фаза высоковалентных оксидов кобальта для вещества покрытия не характерна. В составе покрытия обнаружен оксид кобальта (II) и гидроксооксид.

Для всех оксидных покрытий кобальта характерны высокие потенциалы, при поляризации, что предполагает высокую коррозионную устойчивость этих покрытий.

Коррозионные испытания в 3% (по массе) растворе хлорида натрия показали, что при нанесении оксидов меди, никеля и кобальта на поверхность стали защитные свойства металла по сравнению с незащищенной поверхностью повышаются в 6-8 раз, а в сочетании со фторопластсодержащим материалом или с полиуретановым латексом, после термообработки, в 100 и более раз. Износостойкость поверхности стали повышается в 5-7 раз.

О продолжительности прямого и обратного импульсов в данном случае говорить нельзя, так как был использован ток промышленной частоты. Средняя плотность катодного тока составляла 0,2-0,4 А/дм2.

Похожие патенты RU2293802C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ ИЗ ОКСИДОВ МЕТАЛЛОВ НА СТАЛИ 2010
  • Беспалова Жанна Ивановна
  • Смирницкая Инна Викторовна
  • Храменкова Анна Владимировна
RU2449061C1
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ НА СТАЛЬ 2008
  • Беспалова Жанна Ивановна
  • Клушин Виктор Александрович
  • Смирницкая Инна Викторовна
  • Пятерко Ирина Алексеевна
RU2360043C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОГО ПОКРЫТИЯ НА СТАЛИ 2010
  • Беспалова Жанна Ивановна
  • Смирницкая Инна Викторовна
  • Храменкова Анна Владимировна
RU2449062C1
Способ получения гибридного покрытия на нержавеющей стали 2022
  • Изварина Дарья Николаевна
  • Храменкова Анна Владимировна
RU2785128C1
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОДА ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ПРОЦЕССОВ 2008
  • Беспалова Жанна Ивановна
  • Смирницкая Инна Викторовна
  • Фесенко Вячеслав Григорьевич
  • Кудрявцев Юрий Дмитриевич
RU2385969C1
Способ получения двухслойного гибридного покрытия на нержавеющей стали 2022
  • Храменкова Анна Владимировна
  • Изварина Дарья Николаевна
RU2794145C1
Способ получения покрытия на основе кобальт-марганцевой шпинели на поверхности нержавеющей стали 2022
  • Храменкова Анна Владимировна
  • Яковенко Анастасия Андреевна
RU2790490C1
Способ получения гибкого электродного материала 2023
  • Храменкова Анна Владимировна
  • Мощенко Валентин Валентинович
  • Лаптий Полина Владимировна
  • Южакова Кристина Ростиславовна
RU2807173C1
Способ получения оптически черного гибридного покрытия на стали 2023
  • Храменкова Анна Владимировна
  • Финаева Ольга Александровна
RU2805024C1
Каталитически активный гибридный полимер-оксидный материал и способ его получения 2019
  • Храменкова Анна Владимировна
  • Арискина Дарья Николаевна
RU2731692C1

Реферат патента 2007 года СПОСОБ ОКСИДИРОВАНИЯ ПОВЕРХНОСТИ СТАЛИ

Изобретение относится к способам создания коррозионно-стойкого самосмазывающегося оксидного покрытия на поверхности стали и может быть использовано для работы в узлах трения, гальванотехнике, радиоэлектронной и лакокрасочной промышленности. Способ включает оксидирование с использованием переменного тока в электролите, при этом осаждение оксида металла осуществляют с использованием переменного асимметричного тока в кислом электролите, содержащем соли меди, или никеля, или кобальта, или кадмия, пассиватор и стабилизатор при отношении катодной и анодной составляющих тока 1,5:1 или 2:1 при напряжении 15 В или 20 В соответственно. Технический результат: повышение коррозионной стойкости и износостойкости поверхности стали, снижение энергозатрат.

Формула изобретения RU 2 293 802 C1

Способ оксидирования поверхности стали, включающий оксидирование с использованием переменного тока в электролите, отличающийся тем, что осаждение оксида металла осуществляют с использованием переменного асимметричного тока в кислом электролите, содержащем соли меди, или никеля, или кобальта, или кадмия, пассиватор и стабилизатор при отношении катодной и анодной составляющих тока 1,5:1 или 2:1, при напряжении 15 или 20 В соответственно.

Документы, цитированные в отчете о поиске Патент 2007 года RU2293802C1

JP 4013895, 17.01.1992
0
SU311981A1
Электролит для катодного оксидирования поверхности изделий из нержавеющей стали 1971
  • Богомазов Виталий Александрович
  • Кисилевич Виктор Онуфриевич
  • Комарецкая Людмила Михайловна
  • Шевченко Александр Григорьевич
  • Колесников Вячеслав Никанорович
  • Масальский Альберт Иванович
  • Олейник Евгений Степанович
SU463751A1

RU 2 293 802 C1

Авторы

Беспалова Жанна Ивановна

Мирошниченко Людмила Геннадиевна

Ловпаче Юрий Адамович

Пятерко Ирина Алексеевна

Кудрявцев Юрий Дмитриевич

Даты

2007-02-20Публикация

2005-07-18Подача