СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СЫПУЧИХ МАТЕРИАЛОВ В ПЕЧИ ШАХТНОГО ТИПА Российский патент 2009 года по МПК F27B1/00 

Описание патента на изобретение RU2376539C2

Изобретение относится к производству извести в печах шахтного типа из известняка низкого качества, а также может быть использовано в металлургии для восстановительного обжига железорудных концентратов и других материалов, в строительной области для обжига и сушки сыпучих строительных материалов, в пищевой промышленности для сушки сыпучих материалов, в сельском хозяйстве для сушки различных зерновых культур, в угольной и коксохимической отрасли для сушки угля и т.д.

Существующие способы обжига известняка, восстановительного и (или) окислительного обжига железорудного концентрата, сушки тех или иных сыпучих материалов в печах шахтного типа включают процессы термообработки вертикально движущегося вниз под действием собственного веса потока материала газовым потоком, как правило, в противотоке. Аэродинамический режим в таких печах оказывает существенное влияние на процессы термохимической обработки, такие как нагрев, сушка, обжиг, восстановление.

При заполнении шахты известняком объем межкускового пространства у стен всегда больше, чем в центральной части, что является причиной разности гидравлических сопротивлений между периферией и центром шахты. Это, в свою очередь, приводит к неравномерности по скоростям газового потока по поперечному сечению шахты. При разных способах ввода воздуха в печь протяженность области неустановившегося поля скоростей по высоте печи может достигать четырех диаметров шахты.

Известен способ, реализованный в шахтной печи для обжига сидеритов, а также печь, имеющая в своей конструкции поперечные стенки (керны), предназначенные для обеспечения равномерности обжига (В.А.Кривандин, А.Е.Егоров. Тепловая работа и конструкции печей черной металлургии. М.: Металлургия, 1989 г.).

Основной недостаток способа обжига сыпучих материалов и в этом случае остался нетронутым, а именно в любом вертикальном потоке сыпучих материалов сохраняется неравномерность гидравлического сопротивления по поперечному сечению, что является основной причиной нарушения процесса равномерной термообработки по всему объему печи и в дополнение к этому невозможность измерения и регулирования температуры в зоне обжига. Известная печь с поперечными стенками (кернами) не позволит достичь равномерности обжига, необходимой для качественной термообработки, т.к несмотря на распределяющие газовый поток по всему сечению шахты керны, при вертикальном перемещении газового потока эффект неравномерности термообработки восстанавливается через некоторое время и соответственно распространяется по высоте печи.

Изобретение направлено на обеспечение равномерности термообработки, в частности, обжига сыпучих материалов независимо от их дисперсности и от того, сохраняется ли исходная форма и размеры кусков и частиц или нет, а также обеспечение регулируемости процесса термообработки на любой стадии. Изобретение позволит снизить удельный расход топлива до минимально возможных пределов благодаря контролируемости и регулируемости процесса термообработки при максимальной ее эффективности. Например, при обжиге разрушающегося известняка возможно увеличить содержание (СаО+MgO)акт в извести до 95-97%, а при металлизации железорудного концентрата приблизиться к стехиометрическому расходу восстановительного газа.

Указанный результат достигается тем, что термическая обработка сыпучих материалов в печи шахтного типа включает предварительный нагрев и собственно термообработку, которую осуществляют в условиях непрерывного зигзагообразного пересыпания потока обрабатываемого материала, организованного пересыпными наклонными полками, смонтированными внутри шахты на двух противоположных стенках чередующимися по высоте в шахматном порядке под углом, величина которого не превышает угол естественного откоса обрабатываемого сыпучего материала.

При этом собственно термообработка представляет собой обжиг или сушку, или восстановление. В частных случаях использования способа собственно термообработку осуществляют газообразными продуктами, которые направляют на находящуюся под пересыпной полкой поверхность потока материала, образованную за счет угла его естественного откоса. Способ может включать охлаждение термообработанного материала. Для этого охлаждающий воздух в виде струй направляют на находящуюся на пересыпной полке поверхность материала, образованную за счет угла его естественного откоса. Охлаждающий воздух после его прогрева перед зоной обжига отбирают и отводят для очистки от пыли. Нагретый воздух охлаждения после очистки от пыли направляют в устройства для сжигания топлива в качестве воздуха для горения.

Сущность заявленного способа заключается в том, что термообработку сыпучего материала осуществляют в условиях непрерывного зигзагообразного равномерного пересыпания потока обрабатываемого материала с сохранением сплошности без обратного движения. При этом пересыпание потока организовано пересыпными наклонными полками, смонтированными внутри шахты на двух противоположных стенках в шахматном порядке под углом, величина которого выбирается не более угла естественного откоса обрабатываемого материала.

Печь для термической обработки сыпучих материалов содержит шахту, имеющую зоны предварительного нагрева и собственно термообработки, а также горелочные устройства, притом, что внутри шахты на двух противоположных стенках смонтированы пересыпные наклонные полки, чередующиеся по высоте в шахматном порядке под углом, величина которого не превышает угол естественного откоса обрабатываемого сыпучего материала.

В частных случаях исполнения изобретения в полках выполнены сквозные каналы для прохода газов снизу вверх из под полочного пространства в надполочное пространство. Полки могут быть снабжены механизированными шуровками, выполненными с возможностью продольного перемещения вдоль поверхности полки.

По крайней мере под одной из полок может быть смонтирован коллектор отбора и отвода охлаждающего воздуха и газов в циклонный аппарат очистки. Тракт очищенного горячего воздуха может быть соединен с воздуховодом горения. Полки могут быть снабжены охлаждающими металлическими конструкциями, которые в зоне обжига закрыты огнеупорным и теплоизоляционным материалом. Полки и шахта в зоне охлаждения могут быть выполнены с охлаждаемыми стенками.

Сущность изобретения поясняется чертежами, где на фиг.1 изображена печь для обжига известняка, на фиг.2 - поперечное сечение печи в зоне обжига, на фиг.3 - поперечное сечение печи в зоне охлаждения.

Печь имеет кожух 1, футеровку шахты 2, горелочные устройства 3, бункер загрузки 4, устройство выгрузки 5, расположенные на двух противоположных стенках с чередованием в шахматном порядке под углом естественного откоса обрабатываемого материала полки 6, в которых при необходимости могут быть выполнены сквозные каналы 7 для прохода газов снизу вверх. Полки 6 могут быть снабжены механизированными шуровками 8. В конце зоны охлаждения по крайней мере под одной полкой 6 смонтирован коллектор 9 отбора и отвода воздуха и газов для их очистки. Тракт 10 очищенного от пыли горячего воздуха соединен с воздуховодом горения 11. Полки 6 в зоне обжига сыпучего материала снабжены охлаждаемыми металлическими конструкциями 12, закрытыми сверху огнеупорным и снизу теплоизоляционным материалом. В зоне охлаждения сыпучего материала кожух шахты 1 и полки 6 выполнены с охлаждаемыми стенками (не показано).

Печь шахтного типа с пересыпными полками работает следующим образом. Сыпучий материал, предназначенный для термообработки, загружается в бункер 4 и по его наклонной стенке поступает на первую наклонную полку 6 шахты, откуда ссыпается на вторую полку 6, где изменив направление, под углом естественного откоса пересыпается дальше до выгрузочного устройства 5.

После заполнения шахты печи включается в работу дымосос (не показан), система охлаждения полок 6, запускаются горелочные устройства 3, устройства воздушного охлаждения материала и выгрузки 5. При этом до выхода на стационарный режим из печи будет выдаваться некондиционная продукция, которую можно обратно загрузить в бункер 4. После включения горелочных устройств 3 температура материала постепенно начинает подниматься и к моменту достижения материала из бункера 4 до устройства выгрузки 5 при работающих системах в расчетном режиме качество материала достигает кондиции.

Наклонные полки 6 обеспечивают зигзагообразное перемещение материала, при котором верхний слой материала на предыдущей полке попадает в нижний и средний слои на следующей полке, за счет чего материал по ходу движения вниз интенсивно перемешивается, что является гарантией равномерности процесса термообработки всего объема материала в зонах обжига и охлаждения. Наклон полок 6 под углом естественного откоса материала позволяет обеспечить непрерывность потока и равную порозность движущегося материала по всему объему. Термообработка материала путем направления газообразных продуктов горения на свободную поверхность материала, образованную за счет угла его естественного откоса, позволяет повысить интенсивность теплообмена за счет струйного воздействия на материал, при котором коэффициент теплоотдачи в несколько раз выше, чем при смывании частиц материала в задавленном слое.

Забор воздуха после охлаждения материала, не прерывая обработку движущегося материала, используя пространство под полками, позволяет максимально повысить тепловой КПД печи за счет использования нагретого воздуха в качестве воздуха горения.

Печь с наклонными полками 6 позволяет ликвидировать основной недостаток шахтных печей - каналообразование и неравномерность термообработки по сечению печи и, как следствие этого, спекание материала в зонах каналообразования из-за местного перегрева. Пересыпание с полки на полку обеспечивает активное перемешивание материала и тем самым равномерность обработки. Сквозные каналы 7 на полках обеспечивают частичную продувку движущегося слоя и этим самым повышают интенсивность процесса теплообмена.

Механизированные шуровки 8 на полках 6 позволяют при каких-либо нарушениях схода материала легко восстановить работоспособность печи. Коллектор 9 отбора и отвода нагретого охлаждающего воздуха в воздухоочиститель и тракт 10, подсоединенный к воздуховоду 11 горелочного устройства 3, позволяет использовать вторичное тепло в процессе и тем самым поднять тепловой КПД в печи.

Выполнение полок 6 и кожуха 1 шахты в зоне охлаждения термообработанного материала из металла и охлаждаемыми позволяет обеспечить уменьшение габаритов печи за счет сокращения длины зоны охлаждения.

Изобретение в целом позволяет улучшить термообработку сыпучих продуктов независимо от их крупности, особенно мелкодисперсных при сохранении всех преимуществ, присущих шахтным печам, можно сказать, что изобретение позволяет объединить в одном агрегате лучшие свойства шахтных и барабанных печей.

Например, при обжиге известняка низкого качества, т.е. разрушающегося в процессе обжига, в шахтной печи известной конструкции практически не удается обеспечить содержание (СаО+MgO)акт более 30-60%, как правило, из-за нарушения продуваемости слоя. Изобретение позволит поднять этот показатель до 92-95% за счет устранения указанного недостатка благодаря тонкому слою, воздействию, в основном, на свободную поверхность материала и его непрерывному перемешиванию, практически как в барабанных печах, но в отличие от них с высоком тепловым КПД. На фиг.1 значками «плюс» и «минус» в кружочке показан вариант распределения положительных и отрицательных значений давления по зонам для случая обжига известняка.

В случае восстановительного обжига (металлизации) железорудных и других концентратов, как известно, скорость восстановления сильно зависит от крупности материала и температуры газа. При наличии высокой неравномерности обжига невозможно исключить местные перегревы и, как следствие, спекание материала. Изобретение, благодаря высокой равномерности термообработки, позволяет поднять температуру восстановительного обжига до максимально допустимых величин и тем самым обеспечить высокую производительность агрегата, а самое главное позволяет обрабатывать мелкодисперсный концентрат без предварительной агломерации, что позволит снизить удельные энергозатраты на металлизацию.

Изобретение позволяет проводить термообработку высокодисперсных материалов, которые получаются при гидрообогащении рудного сырья. В данном случае отпадает необходимость операции агломерации. В настоящее время такие процессы проводятся либо в печи кипящего слоя, либо во вращающейся печи, в обоих случаях с очень низким тепловым КПД и большим выносом пыли. Данный способ и агрегат позволят интенсифицировать процесс восстановления (металлизации), поднять тепловой КПД и снизить вынос пыли. Вынос пыли снижается благодаря тому, что при поступательном движении мелкодисперсного материала в потоке пылевидные фракции запутываются и налипают к более крупным фракциям, что обеспечивает их непрерывный снос вниз и вывод из зоны обработки к зоне выгрузки.

В качестве сушильного агрегата изобретение может обеспечить высокую производительность, компактность, высокий тепловой КПД, контролируемость процесса, равномерность обработки, универсальность по дисперсному составу материала, а также возможность применения циклической сушки методом попеременного нагрева и охлаждения при недопустимости нагрева до высоких температур, например, зерновых культур.

Похожие патенты RU2376539C2

название год авторы номер документа
СПОСОБ ВЫСОКОТЕМПЕРАТУРНОЙ ТЕРМООБРАБОТКИ МЕЛКОДИСПЕРСНЫХ СЫПУЧИХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Зайнуллин Лик Анварович
  • Карелин Владислав Георгиевич
  • Спирин Николай Александрович
  • Артов Дмитрий Анатольевич
  • Епишин Артем Юрьевич
  • Зайнуллин Роман Ликович
RU2618585C2
СПОСОБ СУШКИ ПЛОХОСЫПУЧЕГО ЗЕРНИСТОГО МАТЕРИАЛА 2008
  • Зайнуллин Лик Анварович
  • Бычков Алексей Викторович
  • Чеченин Геннадий Иванович
  • Дружинин Геннадий Иванович
  • Жуков Юрий Сергеевич
  • Баков Алексей Вениаминович
RU2410615C2
СПОСОБ СУШКИ ПЫЛЯЩИХ МЕЛКОЗЕРНИСТЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2014
  • Зайнуллин Лик Анварович
  • Карелин Владислав Георгиевич
  • Епишин Артем Юрьевич
  • Артов Дмитрий Анатольевич
  • Зайнуллин Роман Ликович
  • Чэнь Кай
RU2571065C1
Бесшахтный воздухонагреватель 2020
  • Зайнуллин Лик Анварович
  • Дружинин Геннадий Михайлович
  • Зайнуллин Роман Ликович
RU2736818C1
ШАХТНАЯ ПЕЧЬ 1990
  • Маков Е.П.
  • Евсеев Г.А.
  • Хлебов А.П.
  • Хлебов В.П.
  • Маков С.П.
  • Малышева Л.А.
RU2034215C1
ЩЕБЕНОЧНЫЙ ФИЛЬТР-ТЕПЛОУТИЛИЗАТОР С ПОДВИЖНЫМ СЛОЕМ 2017
  • Виницкий Аркадий Лазаревич
  • Карпман Владимир Борисович
  • Лазарев Владимир Ильич
  • Канцуров Александр Николаевич
RU2652036C1
СПОСОБ ОТОПЛЕНИЯ НАГРЕВАТЕЛЬНЫХ И ТЕРМИЧЕСКИХ ПЕЧЕЙ 2016
  • Зайнуллин Лик Анварович
  • Карелин Владислав Георгиевич
  • Епишин Артем Юрьевич
  • Артов Дмитрий Анатольевич
  • Дружинин Геннадий Михайлович
  • Лошкарев Николай Борисович
  • Спирин Николай Александрович
  • Зайнуллин Роман Ликович
RU2651845C2
Устройство для термообработки сыпучего гранулированного материала 1977
  • Цибин Игорь Павлович
  • Шварцман Мордхей Зельманович
  • Халиков Рафик Сейфуллович
  • Кожевников Степан Леонтьевич
  • Кецлах Геннадий Афроимович
SU717508A1
СПОСОБ ПРЯМОГО ВОССТАНОВЛЕНИЯ МАТЕРИАЛОВ, СОДЕРЖАЩИХ ОКСИДЫ МЕТАЛЛОВ, С ПОЛУЧЕНИЕМ РАСПЛАВА МЕТАЛЛА И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2014
  • Зайнуллин Лик Анварович
  • Епишин Артем Юрьевич
  • Карелин Владислав Георгиевич
  • Зайнуллин Роман Ликович
  • Бычков Алексей Викторович
  • Чеченин Геннадий Иванович
  • Спирин Александр Михайлович
RU2612330C2
ШАХТНЫЙ ТЕПЛООБМЕННИК ВРАЩАЮЩЕЙСЯ ПЕЧИ 1999
  • Аббакумов В.Г.
  • Куликов А.А.
  • Тараканчиков Г.А.
  • Шатилов О.Ф.
  • Горбаненко В.М.
  • Лузин А.Г.
  • Кузнецов А.К.
  • Ерохин В.И.
  • Коптелов В.Н.
RU2145696C1

Иллюстрации к изобретению RU 2 376 539 C2

Реферат патента 2009 года СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ СЫПУЧИХ МАТЕРИАЛОВ В ПЕЧИ ШАХТНОГО ТИПА

Изобретение может быть использовано в производстве извести из известняка низкого качества и, кроме того, в металлургии для восстановительного обжига железорудных концентратов и других материалов, для обжига и сушки сыпучих строительных материалов, для сушки пищевых сыпучих материалов, для сушки различных зерновых культур, для сушки угля, в том числе в коксохимической отрасли и т.д. Способ включает термообработку в условиях непрерывного зигзагообразного пересыпания потока обрабатываемого материала, организованного наклонными полками, смонтированными в шахте на двух противоположных стенках чередующимися по высоте в шахматном порядке под углом естественного откоса обрабатываемого сыпучего материала. Термообработку осуществляют газообразными продуктами, направленными на находящуюся под пересыпной полкой поверхность потока материала, образованную за счет угла его естественного откоса. Находящийся на пересыпной полке материал, прошедший термообработку, подвергают струйному воздушному охлаждению. Изобретение направлено на обеспечение равномерности термообработки и регулируемости процесса термообработки на любой стадии, позволит снизить удельный расход топлива. 3 ил.

Формула изобретения RU 2 376 539 C2

Способ термической обработки сыпучих материалов в печи шахтного типа, включающий термообработку в условиях непрерывного зигзагообразного пересыпания потока обрабатываемого материала, организованного наклонными полками, смонтированными в шахте на двух противоположных стенках чередующимися по высоте в шахматном порядке под углом естественного откоса обрабатываемого сыпучего материала, отличающийся тем, что термообработку осуществляют газообразными продуктами, направленными на находящуюся под пересыпной полкой поверхность потока материала, образованную за счет угла его естественного откоса, при этом находящийся на пересыпной полке материал, прошедший термообработку, подвергают струйному воздушному охлаждению.

Документы, цитированные в отчете о поиске Патент 2009 года RU2376539C2

ПЕЧЬ ДЛЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ГРАИУЛИРОВАННЫУМАТЕРИАЛОВ 0
  • Е. А. Букетов, Д. Н. Абишев, П. Малышев, Н. Н. Попрукайло, Б. Б. Ливер, М. Ю. Шарифов Г. Насыров
  • Кировобадский Алюминиевый Завод Химико Металлургический Институт Казахской Сср
SU261693A1
Установка для сушки сыпучих материалов 1971
  • Алейников Владислав Иванович
SU438853A1
Шахтная сушилка 1938
  • Борин А.А.
SU57110A1
Пересыпная шахта печи спекания 1977
  • Маркетов Геннадий Сергеевич
  • Николаев Валентин Михайлович
  • Староверов Александр Андреевич
  • Петров Вячеслав Николаевич
  • Иванов Олег Игоревич
  • Лазарев Георгий Иванович
  • Ипатов Илья Петрович
  • Нестеров Петр Григорьевич
  • Иванов Юрий Николаевич
  • Базылин Валентин Геннадьевич
  • Бузальский Евгений Валерьянович
  • Шевченко Олег Михайлович
SU735895A1
Установка для сушки пылевидного или мелкозернистого топлива твердым теплоносителем 1947
  • Казаринов Ф.Г.
SU86796A1
Способ получения губчатого железа в шахтной печи 1989
  • Лазуткин Сергей Евгеньевич
  • Остроух Николай Николаевич
  • Добромиров Юрий Леонидович
  • Медведева Людмила Исааковна
  • Юртаев Анатолий Алексеевич
  • Пчелкин Станислав Алексеевич
  • Зинягин Геннадий Алексеевич
  • Попов Владимир Егорьевич
  • Хренов Евгений Борисович
  • Цвик Жорж Бельяминович
  • Зюбан Олег Петрович
SU1731822A1
US 3599945 А, 17.08.1971.

RU 2 376 539 C2

Авторы

Зайнуллин Лик Анварович

Дружинин Геннадий Михайлович

Бычков Алексей Викторович

Чеченин Геннадий Иванович

Спирин Александр Михайлович

Карелин Владислав Георгиевич

Прокофьева Людмила Петровна

Артов Дмитрий Анатольевич

Даты

2009-12-20Публикация

2008-01-09Подача