Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов датчиков с высоким внутренним сопротивлением, в структуре аналоговых микросхем различного функционального назначения (например, операционных усилителях, широкополосных и избирательных усилителях, фильтрах и т.п.).
Известны схемы каскодных дифференциальных усилителей (ДУ) на n-p-n транзисторах, у которых эмиттеры выходных транзисторов связаны со входами выходного дифференциального каскада на p-n-p транзисторах [1-5]. В ряде случаев выходной дифференциальный каскад реализуется на таких же n-p-n транзисторах
[6-10].
Существенный недостаток ДУ данного подкласса состоит в том, что он имеет небольшое входное дифференциальное сопротивление (RBX), зависящее от абсолютных значений коэффициента усиления по току базы (β) применяемых транзисторов и их статического режима. Для повышения в известных ДУ применяется местная отрицательная обратная связь (вводятся эмиттерные резисторы). Однако при этом ухудшаются многие параметры ДУ - коэффициент усиления по напряжению, напряжение смещения нуля, коэффициент подавления помехи по питанию, крутизна усиления ДУ и др.
Ближайшим прототипом заявляемого устройства является дифференциальный усилитель, представленный в патенте США №5.218.319. Он содержит первый 1 и второй 2 входные транзисторы, эмиттеры которых связаны с токостабилизирующим двухполюсником 3, а коллекторы подключены к эмиттерам первого 4 и второго 5 выходных транзисторов с объединенными базами и базам первого 6 и второго 7 вспомогательных транзисторов с объединенными эмиттерами.
Основная цель предлагаемого изобретения состоит в повышении входного сопротивления RBX без ухудшения Ky и токопотребления ДУ. В целом это позволяет обеспечить повышение обобщенного показателя качества Q. Дополнительная цель - в уменьшении статических входных токов ДУ.
Поставленная цель достигается тем, что в каскодном дифференциальном усилителе (фиг.1), содержащем первый 1 и второй 2 входные транзисторы, эмиттеры которых связаны с токостабилизирующим двухполюсником 3, а коллекторы подключены к эмиттерам первого 4 и второго 5 выходных транзисторов с объединенными базами и базам первого 6 и второго 7 вспомогательных транзисторов с объединенными эмиттерами, предусмотрены новые элементы и связи - в схему введено дополнительное токовое зеркало 8, вход которого связан с базами первого 4 и второго 5 выходных транзисторов, а выход подключен к объединенным эмиттерам первого 6 и второго 7 вспомогательных транзисторов, причем коллектор первого 6 вспомогательного транзистора соединен с базой первого 1 входного транзистора, а коллектор второго 7 вспомогательного транзистора соединен с базой второго 2 входного транзистора.
На фиг.2 представлена схема заявляемого устройства в соответствии с п.1 и п.2 формулы изобретения.
На фиг.3 представлена схема ДУ-прототипа в среде компьютерного моделирования PSpice на моделях интегральных транзисторов ФГУП ИНН «Пульсар», а на фиг.4 показана схема заявляемого устройства.
Графики на фиг.5 характеризуют температурные зависимости входных токов ДУ (фиг.3) и ДУ (фиг.4) при напряжении Е11=0, из которых следует, что предлагаемое устройство имеет более чем в 40 раз меньший входной ток.
На фиг.6 показаны частотные зависимости входных сопротивлений заявляемого (фиг.4) и известного (фиг.3) дифференциальных усилителей при Е11=0, из которых следует, что входное сопротивление предлагаемой схемы более чем в 20 раз больше, чем у ДУ-прототипа.
На фиг.7 приведены графики температурной зависимости входного тока ДУ-прототипа (фиг.3) и ДУ, соответствующего фиг.4 при Е11=1,5 В.
На фиг.8 показаны частотные зависимости входных сопротивлений заявляемого (фиг.4) и известного (фиг.3) дифференциальных усилителей при E11=var, из которых следует, что входное сопротивление предлагаемой схемы (фиг.4) в 1000 раз больше, чем у ДУ-прототипа, если Е11=1,5 В.
Каскодный дифференциальный усилитель (фиг.2) содержит первый 1 и второй 2 входные транзисторы, эмиттеры которых связаны с токостабилизирующим двухполюсником 3, а коллекторы подключены к эмиттерам первого 4 и второго 5 выходных транзисторов с объединенными базами и базам первого 6 и второго 7 вспомогательных транзисторов с объединенными эмиттерами. В схему введено дополнительное токовое зеркало 8, вход которого связан с базами первого 4 и второго 5 выходных транзисторов, а выход подключен к объединенным эмиттерам первого 6 и второго 7 вспомогательных транзисторов, причем коллектор первого 6 вспомогательного транзистора соединен с базой первого 1 входного транзистора, а коллектор второго 7 вспомогательного транзистора соединен с базой второго 2 входного транзистора.
На фиг.2 в соответствии с п.2 формулы изобретения вход дополнительного токового зеркала 8 связан с базами первого 4 и второго 5 выходных транзисторов через цепь согласования потенциалов 11, постоянное напряжение между выводами которой выбирается с учетом постоянной составляющей напряжения на входе дополнительного токового зеркала 8 таким образом, чтобы напряжения коллектор-база выходных 4 и 5 и входных 1 и 2 транзисторов были приблизительно одинаковы. Это обеспечивает более высокую степень компенсации RBX.
Рассмотрим работу КДУ (фиг.2) на постоянном токе.
При нулевом входном напряжении uВХ=0 эмиттерные токи транзисторов 1, 2, 3, 4, 5
где I3=2I0 - суммарный ток общей эмиттерной цепи ДУ.
Поэтому входной ток токового зеркала 8
где β4=β5=β4-5 - коэффициент усиления по току базы транзисторов 4 и 5.
Учитывая, что коэффициент передачи по току подсхемы 8 близок к единице (Кi12.8=1), находим, что суммарный ток эмиттерной цепи транзисторов 6 и 7 (I6-7) и их коллекторные токи
Следовательно, статические входные токи КДУ
Учитывая, что транзисторы 1, 2, 3, 4 и 5 имеют одинаковый тип проводимости и одинаковый характер температурной и радиационной зависимости β, из (6) и (7) можно сделать вывод о том, что входные статические токи предлагаемого ДУ существенно меньше, чем у ДУ-прототипа.
Рассмотрим работу ДУ (фиг.2) на переменном токе.
Увеличение uвх приводит к появлению тока базы транзистора 1:
где
- дифференциальное сопротивление эмиттерных переходов транзисторов 1 и 2;
φт - температурный потенциал;
I3=2I0 - суммарный ток эмиттерной цепи ДУ.
Так как дифференциальные сопротивления эмиттерных переходов транзисторов 4 и 5 равны дифференциальным сопротивлениям эмиттерных переходов транзисторов 1 и 2 для малого сигнала, то напряжение между базами транзисторов 6 и 7
Поэтому под действием uб.6-7=uBX коллекторный ток транзистора 6 увеличивается, транзистора 7 уменьшается
где с учетом (4) и (5):
Таким образом, переменный входной ток iBX.1 ДУ (фиг.2) и, следовательно, его входная проводимость yВХ.1 уменьшаются
где
- входная проводимость ДУ-прототипа.
Так как транзисторы 1, 2, 4 и 5 идентичны по величине β, то, следовательно, входное сопротивление ДУ (фиг.2) значительно выше RBX ДУ-прототипа. Об этом свидетельствуют графики на фиг.6 и фиг.8.
Следует заметить, что режимная зависимость β1 и β4, β5 транзисторов 1, 2 (4, 5) от статического напряжения коллектор-база Uкб не позволяет получить полную компенсацию при произвольных величинах Uкб.1-2(Uкб.4-5). В этой связи для получения предельных значений RBX в соответствии с п.2 формулы изобретения необходимо ввести дополнительную цепь согласования потенциалов 11, условно показанную на фиг.3 в виде источника э.д.с. Е11. В частных случаях ее функции могут выполнять разные транзисторные каскады. Такое схемотехническое решение позволяет получить мегаомные значения RBX (фиг.8) и наноамперные статические входные токи IВХ.1 (фиг.7).
Полученные выше теоретические выводы подтверждаются результатами моделирования известной и предлагаемой схем в среде PSpice на моделях интегральных транзисторов ФГУП НПП «Пульсар» (фиг.5-фиг.8). При этом заявляемый ДУ имеет более чем на один-два порядка более высокие значения входного сопротивления. Данный результат обеспечивается без ухудшения других параметров ДУ - токопотребления, коэффициента усиления по напряжению и напряжения смещения нуля. Кроме этого статические входные токи заявляемого ДУ значительно меньше, чем в схеме ДУ-прототипа.
Библиографический список
1. Патент США № 5.218.319.
2. Патент США № 6.304.142, fig.3.
3. Патент США № 4.721.920.
4. Патент США № 4.498.053, fig.l.
5. А.с. СССР № 600545.
6. Патент США № 6.111.463, fig 1.
7. Патент США № 4.288.707, fig.2.
8. Патент США № 5.521.544, fig.6.
9. Патентная заявка США № 2002/005393.
10. Патентная заявка США № 004/0251965, fig.5.
название | год | авторы | номер документа |
---|---|---|---|
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ | 2009 |
|
RU2416145C1 |
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ | 2011 |
|
RU2455758C1 |
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ | 2011 |
|
RU2439784C1 |
КОМПЛЕМЕНТАРНЫЙ КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ПАРАФАЗНЫМ ВЫХОДОМ | 2010 |
|
RU2439779C1 |
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ | 2009 |
|
RU2408975C1 |
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ПОВЫШЕННЫМ КОЭФФИЦИЕНТОМ УСИЛЕНИЯ | 2011 |
|
RU2455756C1 |
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ | 2011 |
|
RU2469465C1 |
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ | 2011 |
|
RU2439780C1 |
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С МАЛЫМ НАПРЯЖЕНИЕМ СМЕЩЕНИЯ НУЛЯ | 2009 |
|
RU2402152C1 |
КАСКОДНЫЙ ДИФФЕРЕНЦИАЛЬНЫЙ УСИЛИТЕЛЬ С ПОВЫШЕННЫМ КОЭФФИЦИЕНТОМ УСИЛЕНИЯ | 2011 |
|
RU2439787C1 |
Изобретение относится к области радиотехники и связи и может быть использовано для усиления аналоговых сигналов датчиков с высоким внутренним сопротивлением, в структуре аналоговых микросхем различного функционального назначения (например, операционных усилителях, широкополосных и избирательных усилителях, фильтрах и т.п.). Технический результат - повышение входного сопротивления. Каскодный дифференциальный усилитель (КДУ) содержит первый (1) и второй (2) входные транзисторы (Т), эмиттеры которых связаны с токостабилизирующим двухполюсником (3), а коллекторы подключены к эмиттерам первого (4) и второго (5) выходных Т с объединенными базами и базам первого (6) и второго (7) вспомогательных Т с объединенными эмиттерами. В схему введено дополнительное токовое зеркало (8), вход которого связан с базами выходных Т (4) и (5), а выход подключен к объединенным эмиттерам первого (6) и второго (7) вспомогательных Т, причем коллектор первого (6) вспомогательного Т соединен с базой первого (1) входного Т, а коллектор второго (7) вспомогательного Т соединен с базой второго (2) входного Т. 1 з.п. ф-лы, 8 ил.
1. Каскодный дифференциальный усилитель, содержащий первый (1) и второй (2) входные транзисторы, эмиттеры которых связаны с токостабилизирующим двухполюсником (3), а коллекторы подключены к эмиттерам первого (4) и второго (5) выходных транзисторов с объединенными базами и базам первого (6) и второго (7) вспомогательных транзисторов с объединенными эмиттерами, отличающийся тем, что в схему введено дополнительное токовое зеркало (8), вход которого связан с базами первого (4) и второго (5) выходных транзисторов, а выход - подключен к объединенным эмиттерам первого (6) и второго (7) вспомогательных транзисторов, причем коллектор первого (6) вспомогательного транзистора соединен с базой первого (1) входного транзистора, а коллектор второго (7) вспомогательного транзистора соединен с базой второго (2) входного транзистора.
2. Каскодный дифференциальный усилитель по п.1, отличающийся тем, что вход дополнительного токового зеркала (8) связан с базами первого (4) и второго (5) выходных транзисторов через цепь согласования потенциалов, постоянное напряжение между выводов которой выбирается с учетом постоянной составляющей напряжения на входе дополнительного токового зеркала (8) таким образом, чтобы напряжение коллектор-база выходных (4) и (5) и входных (1) и (2) транзисторов были приблизительно одинаковы.
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами | 1921 |
|
SU10A1 |
Дифференциальный усилитель | 1985 |
|
SU1246340A1 |
EP 0762629 A1, 12.03.1977 | |||
СИНТАКТИЧЕСКИЕ ПОЛИУРЕТАНОВЫЕ ЭЛАСТОМЕРЫ ДЛЯ ИСПОЛЬЗОВАНИЯ В КАЧЕСТВЕ ИЗОЛЯЦИИ ПРОЛЕГАЮЩИХ ПО ДНУ МОРЯ ТРУБОПРОВОДОВ | 2014 |
|
RU2673340C2 |
Авторы
Даты
2010-07-10—Публикация
2009-03-27—Подача