КАТАЛИЗАТОР ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ В КИСЛОРОДСОДЕРЖАЩЕМ ГАЗЕ (ВАРИАНТЫ) И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 2010 года по МПК B01J23/34 B01J21/06 B01J21/04 B01J29/70 B01J37/02 B01D53/72 

Описание патента на изобретение RU2402379C1

Область техники, к которой относится изобретение

Изобретение относится к каталитической химии, в частности к катализаторам окисления углеводородов, которые могут быть использованы в криогенной промышленности при производстве криптоноксенонового концентрата.

Уровень техники

Окисление углеводородов в кислородсодержащем газе с глубиной 99,9% достигается на известных катализаторах, в качестве которых выступают оксиды меди или алюминия, работающие при температуре 700-750°С и объемной скорости подачи сырьевого газа от 500 до 1000 час-1 (В.Г.Фастовский, А.Е.Ровинский, Ю.В.Петровский. Инертные газы. М., Атомиздат, 1972, с.238).

Недостатком данных катализаторов является низкая каталитическая активность оксида меди и оксида алюминия в процессе окисления углеводородов, что вызывает необходимость ведения процесса при высоких температурах и низких скоростях подачи сырья.

Известен катализатор глубокого окисления легких парафиновых углеводородов, представляющий собой платину или палладий, нанесенные на высококремнеземный волокнистый носитель (патент РФ №2305090).

К недостаткам данного катализатора можно отнести низкую каталитическую активность, требующую для достижения приемлемых результатов низкой объемной скорости подачи газа - до 2000 час -1, а соответственно, и низкую производительность процесса.

Известны катализаторы окисления, содержащие смешанные оксиды меди, магния, редкоземельных элементов, нанесенные на инертные пористые неорганические носители - оксиды алюминия, кремния и алюмосиликаты (патент РФ №2001127582).

Недостатком этих катализаторов также является низкая каталитическая активность.

Наиболее близким к предлагаемому изобретению является монолитный катализатор, представляющий собой оксид циркония, содержащий оксиды редкоземельных элементов (патент РФ №97103363).

Недостатками известного катализатора являются недостаточная каталитическая активность, низкий ресурс и необходимость применения высоких температур процесса окисления - 1000-1300°С.

Известен способ приготовления катализаторов окисления углеводородов путем пропитки минерального волокнистого носителя растворами нитратов кобальта, хрома и железа с последующей сушкой и прокаливанием (патент РФ №1783666).

Недостатками получаемого по известному способу катализатора являются низкая селективность и непродолжительный срок службы (4000 час).

Наиболее близким к предлагаемому изобретению является способ приготовления биметаллического платинорениевого катализатора на оксидно-алюминиевом носителе (Е-801R), получаемого путем пропитки прокаленного носителя водным раствором, содержащим предшественник активного компонента (патент РФ №2245190).

Недостатками получаемого катализатора являются малый ресурс работы и низкая каталитическая активность в процессе окисления метана, причем наивысшая активность катализатора проявляется только при достаточно высоких температурах. Недостатком способа получения катализатора является проведение пропитки носителя в кислой среде, что приводит к малому ресурсу катализатора, обусловленному низкой механической прочностью получаемого по данной технологии катализатора.

Раскрытие изобретения

Задачей изобретения является получение высокоактивного катализатора окисления углеводородов в составе кислородсодержащего газа с большим ресурсом работы.

Технический результат, достигаемый при реализации заявленного изобретения, состоит в повышении активности катализатора, обеспечивающего высокую производительность в реакциях окисления углеводородов при достаточно низких температурах процесса и высокой механической прочностью, обеспечивающей продолжительный ресурс работы.

Технический результат достигается тем, что катализатор окисления углеводородов содержит оксид марганца на носителе, включающем гранулированный оксид циркония или порошкообразный оксид алюминия в смеси с кристаллическим мезопористым алюмосиликатом с мольным отношением Si/Al, равным 10-60, при следующем содержании компонентов, мас.%:

Оксид марганца (MnO2) 5,0-20,0 Оксид циркония (ZrO2) 80,0-95,0 или: Оксид марганца (MnO2) 5,0-20,0 Оксид алюминия (Al2O3) 40,0-85,0 Кристаллический мезопористый алюмосиликат (AlxSiyOz) 10,0-40,0

Заявленное изобретение позволяет значительно увеличить ресурс катализатора и каталитическую активность при повышении степени очистки кислородсодержащего газа от примесей легких углеводородов за счет использования катализатора с указанным соотношением компонентов при достаточно низких температурах.

Поставленная задача и технический результат достигаются при реализации способа тем, что получение катализатора окисления углеводородов включает приготовление носителя - оксида циркония или оксида алюминия в смеси с кристаллическим мезопористым алюмосиликатом, пропитку носителя водным раствором хлорида марганца, последующую сушку и прокаливание, причем носитель - оксид алюминия в смеси с кристаллическим мезопористым алюмосиликатом - получают смешиванием порошкообразных оксида алюминия и кристаллического мезопористого алюмосиликата с мольным отношением Si/Al, равным 10-60:1, увлажнением полученной смеси и желированием 1,5-5%-ным раствором азотной кислоты. В ходе прокаливания катализатора гидрохлорид марганца разлагается с получением оксида марганца, который является активным компонентом катализатора. Применение катализатора, содержащего 5-20 мас.% оксида марганца на носителе (оксид циркония или оксид алюминия в смеси с кристаллическим мезопористым алюмосиликатом), в процессе окисления углеводородных газов в составе кислородсодержащего газа позволяет снизить содержание углеводородных газов до 3 ppm и менее при объемной скорости 14500 час-1.

Осуществление изобретения

Способ приготовления катализатора заключается в том, что гранулированный оксид циркония пропитывают водным раствором хлорида марганца, взятым в таком количестве, чтобы катализатор содержал 5-20 мас.% в пересчете на оксид марганца, или порошкообразный оксид алюминия смешивают с 10-40% кристаллического мезопористого алюмосиликата с мольным отношением Si/Al, равным 10-60:1, увлажняют, желируют 1,5-5%-ным раствором азотной кислоты, формуют в гранулы экструзией, а затем полученный носитель сушат, прокаливают и пропитывают водным раствором хлорида марганца.

Изобретение иллюстрируется следующими примерами.

Пример 1

95 г прокаленного при 550°С оксида циркония с удельной площадью поверхности не менее 90 м2/г и объемом пор не менее 0,3 см3/г помещают в водный раствор хлорида марганца, содержащий 13,4 г MnCl2·4H2O. Объем пропиточного раствора составляет 45 мл. Пропитку осуществляют при температуре 20°С в течение 12 часов. После завершения пропитки избыточный пропиточный раствор отделяют декантацией, а катализатор просушивают при температуре 60-110°С в течение 6-ти часов. Затем катализатор прокаливают при температуре 550°С в течение 3 часов, причем до указанной температуры катализатор нагревают со скоростью не более 50 град./час.

Состав синтезированного катализатора, мас.%: ZrO2 95; MnO2 5.

Пример 2

90 г прокаленного при 550°С оксида циркония с удельной площадью поверхности не менее 90 м2/г и объемом пор не менее 0,3 см3/г помещают в водный раствор хлорида марганца, содержащий 22,7 г MnCl·Н2О. Объем пропиточного раствора составляет 40 мл. Пропитку осуществляют при температуре 20°С в течение 12 часов. После завершения пропитки избыточный пропиточный раствор отделяют декантацией, а катализатор просушивают при средней температуре 85°С в течение 6-ти часов. Затем катализатор прокаливают при температуре 550°С в течение 3 часов при скорости подъема температуры не более 50 град./час.

Состав синтезированного катализатора, мас.%: ZrO2 90; MnO3 10.

Пример 3

80 г прокаленного при 550°С оксида циркония с удельной площадью поверхности не менее 90 м2/г и объемом пор не менее 0,3 см3/г помещают в водный раствор хлорида марганца, содержащий 45,5 г MnCl2·4H2O. Объем пропиточного раствора составляет 36 мл. Пропитку осуществляют при температуре 20°С в течение 12 часов. После завершения пропитки избыточный пропиточный раствор отделяют декантацией, а катализатор просушивают при средней температуре 85°С в течение 6-ти часов. Затем катализатор прокаливают при температуре 550°С в течение 3 часов при скорости подъема температуры не более 50 град./час.

Состав синтезированного катализатора, мас.%: ZrO2 80; MnO2 20.

Пример 4

78,5 г влажного порошка оксида алюминия смешивают с 51,7 г влажного порошка кристаллического мезопористого алюмосиликата с мольным соотношением Si/Al 10: 1. Смесь сначала увлажняют дистиллированной водой, а затем при интенсивном перемешивании желируют 1,5% раствором азотной кислоты. Полученную пластичную массу носителя формуют в цилиндрические гранулы экструзией.

Гранулы носителя подсушивают при комнатной температуре в течение 24 ч, затем просушивают течение 6-ти часов при средней температуре 85°С. Просушенные гранулы носителя затем прокаливают в токе воздуха при 600°С в течение 3 ч с подъемом температуры до указанной со скоростью 100°С в час.

95 г прокаленного при 600°С готового носителя с удельной площадью поверхности не мене 150 м2/г и объемом пор не менее 0,5 см3/г помещают в водный раствор гидрохлорида марганца, содержащий 13,4 г MnCl2·4H2O. Объем пропиточного раствора составляет 71,25 мл. Пропитку осуществляют при температуре 20°С в течение 12 часов. После завершения пропитки избыточный раствор отделяют декантацией, а катализатор просушивают при средней температуре 85°С в течение 6-ти часов. Затем катализатор прокаливают при температуре 600°С в течение 3 часов с достижением заданной температуры со скоростью не более 50 град./час.

Состав синтезированного катализатора, мас.%: Al2O3 85; AlxSiyOz (где х=0,017-0,1, y=1, z=2,026-2,15) 10; MnO2 5.

Пример 5

104,5 г влажного порошка оксида алюминия смешивают с 25,2 г влажного порошка кристаллического мезопористого алюмосиликата с мольным соотношением Si/Al 30:1. Смесь сначала увлажняют дистиллированной водой, а затем при интенсивном перемешивании смесь желируют 3,0% раствором азотной кислоты. Полученную пластичную массу носителя формуют в цилиндрические гранулы методом экструзии.

Гранулы носителя подсушивают, просушивают и прокаливают аналогично примеру 4.

90 г прокаленного при 500°С готового носителя с удельной площадью поверхности не мене 150 м2/г и объемом пор не менее 0,5 см3/г помещают в водный раствор гидрохлорида марганца, содержащий 22,7 г MnCl2·4H2O. Объем пропиточного раствора составляет 67,5 мл. Пропитку осуществляют при температуре 20°С в течение 12 часов. После завершения пропитки избыточный пропиточный раствор отделяют декантацией, а катализатор просушивают при средней температуре 85°С в течение 6-ти часов. Затем катализатор прокаливают при температуре 500°С в течение 3 часов при скорости подъема температуры до заданной не более 50 град./час.

Состав синтезированного катализатора, мас.%: Al2O3 70; AlxSiyOz (где х=0,017-0,1, y=1, z=2,026-2,15) 20; MnO2 10.

Пример 6

123,9 г влажного порошка оксида алюминия смешивают с 6,3 г влажного порошка кристаллического мезопористого алюмосиликата с мольным соотношением Si/Al 60:1. Смесь сначала увлажняют дистиллированной водой, а затем при интенсивном перемешивании желируют 5,0% раствором азотной кислоты. Полученную пластичную массу носителя формуют в цилиндрические гранулы методом экструзии.

Гранулы носителя просушивают и прокаливают аналогично примеру 4.

80 г прокаленного носителя с удельной площадью поверхности не менее 150 м2/г и объемом пор не менее 0,5 см3/г помещают в водный раствор гидрохлорида марганца, содержащий 45,5 г MnCl2·4Н2О. Объем пропиточного раствора составляет 60 мл. Пропитку осуществляют при температуре 20°С в течение 12 часов. После завершения пропитки избыточный раствор отделяют декантацией, а катализатор просушивают при средней температуре 85°С в течение 6-ти часов. Затем катализатор прокаливают при температуре 550°С в течение 3 часов при скорости подъема температуры не более 50 град./час.

Состав синтезированного катализатора, мас.%: Al2O3 40; AlxSiyOz (где х=0,017-0,1, y=1, z=2,026-2,15) 40; MnO2 20.

Катализаторы, приготовленные по примерам 1, 2, 3, 4, 5, 6, испытывали на активность в реакции окисления метана в составе кислородсодержащего газа на лабораторной проточной установке. Содержание метана в исходном кислородсодержащем газе составляло 3000 ppm. Условия и результаты испытания катализаторов представлены в таблице. Активность катализаторов оценивали по остаточному содержанию метана в кислородсодержащем газе. Для сравнения в таблице приведены данные, полученные при испытании катализатора-прототипа - Е-801 R и катализатора-аналога - оксид алюминия. Из приведенных данных видно, что катализаторы, синтезированные по Примерам 1, 2, 3, 4, 5 и 6, обладают более высокой активностью в реакции окисления метана по сравнению с катализаторами - аналогом и прототипом. Остаточное содержание метана в кислородсодержащем газе в количестве менее 3 ppm или отсутствие на синтезированных по Примерам 1, 2, 3, 4, 5 и 6 достигается при более низких температурах и более высоких объемных скоростях по сравнению с прототипом и аналогом. При этом ресурс катализатора составил более 7 лет при непрерывном использовании.

Промышленная применимость

Предложенный катализатор окисления углеводородов, входящих в состав кислородсодержащего газа, и предложенный способ его приготовления может быть использованы в металлургической промышленности при очистке кислорода от горючих газов и криогенной технике при получении криптоноксеноновой смеси.

п/п Наименование катализатора Температура процесса, °С Объемная скорость подачи сырьевого газа, час-1 Содержание метана в кислородсодержащем газе, ppm 1. E-801R - прототип 520 3000 отсутствие 530 4500 менее 3 540 5600 отсутствие 540 7000 отсутствие 2. Оксид алюминия - аналог 540 3000 50 700 1500 менее 3 3. По примеру 1 440 3000 отсутствие 460 5000 отсутствие 500 7000 менее 3 4. По примеру 2 430 3000 отсутствие 440 4500 отсутствие 450 7000 менее 3 470 14500 менее 3 5. По примеру 3 440 3000 отсутствие 450 4500 отсутствие 465 7000 менее 3 470 7000 отсутствие 6. По примеру 4 500 3000 менее 3 530 4500 отсутствие 540 7000 отсутствие 540 9000 менее 3 7. По примеру 5 450 3000 отсутствие 460 4500 менее 3 8. По примеру 6 490 3000 менее 3 520 4500 менее 3 540 7000 отсутствие

Похожие патенты RU2402379C1

название год авторы номер документа
КАТАЛИЗАТОР ГИДРИРОВАНИЯ АРЕНОВ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2006
  • Логинова Анна Николаевна
  • Лысенко Сергей Васильевич
  • Иванов Александр Владимирович
  • Фадеев Вадим Владимирович
  • Китова Марианна Валерьевна
  • Шарихина Мария Александровна
  • Кириллов Андрей Станиславович
RU2309796C1
НОСИТЕЛЬ КАТАЛИЗАТОРА ГИДРООБЛАГОРАЖИВАНИЯ ВАКУУМНОГО ГАЗОЙЛЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ (ВАРИАНТЫ) 2015
  • Логинова Анна Николаевна
  • Михайлова Янина Владиславовна
  • Исаева Екатерина Алексеевна
  • Круковский Илья Михайлович
  • Сафатова Ирина Александровна
RU2605939C2
Катализатор гидрооблагораживания вакуумного газойля и способы его приготовления (варианты) 2016
  • Логинова Анна Николаевна
  • Морозова Янина Владиславовна
  • Кашкина Елена Ивановна
  • Леонтьев Алексей Николаевич
  • Архипова Ирина Александровна
  • Фадеев Вадим Владимирович
RU2616601C1
КАТАЛИЗАТОР ДЛЯ ГЛУБОКОГО ОКИСЛЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ И ОКСИДА УГЛЕРОДА В ГАЗОВЫХ ВЫБРОСАХ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2001
  • Мулина Т.В.
  • Борисова Т.В.
  • Любушкин В.А.
  • Чумаченко В.А.
RU2199387C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Мокринский В.В.
  • Носков А.С.
RU2214306C1
КАТАЛИЗАТОР ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА И СПОСОБ 2002
  • Мокринский В.В.
  • Носков А.С.
  • Иванова А.С.
RU2211087C1
Катализатор глубокого гидрообессеривания вакуумного газойля и способ его приготовления (варианты) 2018
  • Морозова Янина Владиславовна
  • Логинова Анна Николаевна
  • Архипова Ирина Александровна
  • Баканев Иван Алексеевич
  • Фадеев Вадим Владимирович
RU2666733C1
КАТАЛИЗАТОР ГИДРОКРЕКИНГА И ГИДРООЧИСТКИ ТЯЖЕЛЫХ ОСТАТКОВ НЕФТИ, ВЯЗКОЙ И ВЫСОКОВЯЗКОЙ НЕФТИ 2019
  • Ламберов Александр Адольфович
  • Ильясов Ильдар Равилевич
RU2692795C1
КАТАЛИЗАТОР ВЫСОКОТЕМПЕРАТУРНОГО СЖИГАНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА (ВАРИАНТЫ) 2001
  • Цикоза Л.Т.
  • Яшник С.А.
  • Исмагилов З.Р.
  • Шкрабина Р.А.
  • Корябкина Н.А.
  • Кузнецов В.В.
RU2185238C1
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ АЗОТА 2002
  • Мокринский В.В.
  • Носков А.С.
RU2213615C1

Реферат патента 2010 года КАТАЛИЗАТОР ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ В КИСЛОРОДСОДЕРЖАЩЕМ ГАЗЕ (ВАРИАНТЫ) И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к каталитической химии, в частности к катализаторам окисления углеводородов в кислородсодержащем газе, и способам их получения. Описан катализатор окисления углеводородов, содержащий каталитически активный компонент - оксид марганца - и носитель в виде гранулированного оксида циркония, при следующем содержании составляющих, мас.%: оксид марганца (MnO2) 5,0-20,0; оксид циркония (ZrO2) 80,0-95,0. Описан также катализатор, содержащий оксид марганца и гранулированный носитель из порошкообразного оксида алюминия в смеси с кристаллическим мезопористым алюмосиликатом с мольным отношением Si/Al, равным 10-60:1, при следующем содержании составляющих, мас.%: оксид марганца (MnO2) 5,0-20,0; оксид алюминия (Al2O3) 40,0-85,0; кристаллический мезопористый алюмосиликат (AlxSiyOz, где х=0,017-0,1, y=1, z=2,026-2,15) 10,0-40,0. Описан способ получения указанных выше катализаторов (варианты), включающий приготовление носителя - оксида циркония или гранулированной смеси порошкообразного оксида алюминия и кристаллического мезопористого алюмосиликата, и нанесение на него оксида марганца, получаемого прокаливанием при 500-600°С пропитанного водным раствором гидрохлорида марганца носителя после его просушки в интервале температур от 60 до 110°С. Технический результат - повышение каталитической активности и срока службы катализатора. 4 н. и 2 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 402 379 C1

1. Катализатор окисления углеводородов, содержащий носитель в виде гранулированного оксида циркония и каталитически активный компонент, отличающийся тем, что в качестве каталитически активного компонента используют оксид марганца при следующем содержании составляющих, мас.%:
Оксид марганца (MnO2) 5,0-20,0 Оксид циркония (ZrO2) 80,0-95,0

2. Катализатор окисления углеводородов, содержащий гранулированный носитель и каталитически активный компонент, отличающийся тем, что в качестве каталитически активного компонента используют оксид марганца, а в качестве носителя используют порошкообразный оксид алюминия в смеси с кристаллическим мезопористым алюмосиликатом с мольным отношением Si/Al, равным 10-60:1, при следующем содержании составляющих, мас.%:
Оксид марганца (MnO2) 5,0-20,0 Оксид алюминия (Al2O3) 40,0-85,0 Кристаллический мезопористый алюмосиликат (AlxSiyOz, где x=0,017-0,1, y=1, z=2,026-2,15) 10,0-40,0

3. Способ получения катализатора окисления углеводородов по п.1, включающий приготовление носителя и нанесение на него каталитически активного компонента, отличающийся тем, что в качестве каталитически активного компонента используют оксид марганца, получаемого прокаливанием при температуре 500-600°С пропитанного водным раствором гидрохлорида марганца носителя после его просушки в интервале температур от 60 до 110°С, причем в качестве носителя используют оксид циркония.

4. Способ по п.3, отличающийся тем, что температуру прокаливания поднимают со скоростью не выше 50°С в час.

5. Способ получения катализатора окисления углеводородов по п.2, включающий приготовление носителя и нанесение на него каталитически активного компонента, отличающийся тем, что в качестве каталитически активного компонента используют оксид марганца, получаемого прокаливанием при температуре 500-600°С пропитанного водным раствором гидрохлорида марганца носителя после его просушки в интервале температур от 60 до 110°С, причем в качестве носителя используют гранулированную смесь порошкообразного оксида алюминия и кристаллического мезопористого алюмосиликата.

6. Способ по п.5, отличающийся тем, что температуру прокаливания поднимают со скоростью не выше 50°С в час.

Документы, цитированные в отчете о поиске Патент 2010 года RU2402379C1

СПОСОБ НЕПОЛНОГО КАТАЛИТИЧЕСКОГО ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ 1995
  • Людовикус Леонардус Герардус Якобс
  • Питер Уилльям Леднор
  • Петрус Йозефус Мария Ван Лон
  • Мартен Остервелд
  • Курт Александер Вонкеман
  • Хендрикус Мартинус Вентинк
  • Герардус Петрус Ван Дер Звет
  • Жан Поль Ланж
RU2154015C2
КАТАЛИЗАТОР ОКИСЛЕНИЯ ОКСИДА УГЛЕРОДА И УГЛЕВОДОРОДОВ 1998
  • Воропанова Л.А.
  • Лисицына О.Г.
RU2156653C2
КАТАЛИЗАТОР ВЫСОКОТЕМПЕРАТУРНОГО СЖИГАНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА (ВАРИАНТЫ) 2001
  • Цикоза Л.Т.
  • Яшник С.А.
  • Исмагилов З.Р.
  • Шкрабина Р.А.
  • Корябкина Н.А.
  • Кузнецов В.В.
RU2185238C1
JP 2003080068 А, 18.03.2003
CN 101028595 A, 05.09.2007
US 7431904 B2, 07.10.2008.

RU 2 402 379 C1

Авторы

Логинова Анна Николаевна

Шатков Владимир Анатольевич

Фадеев Вадим Владимирович

Лысенко Сергей Васильевич

Даты

2010-10-27Публикация

2009-07-30Подача