FIELD: medicine, pharmaceutics.
SUBSTANCE: invention relates to antibacterial medication, consisting of silver-containing particles of aluminium sulfate hydroxide, represented by the following formulae (X-I) or (Y-I): (AgaBb-a)bAlcAx(SO4)y(OH)z·pH2O (X-I), where a, b, c, x, y, z and p satisfy inequalities 0.00001≤a<0.5; 0.7≤b≤1.35; 2.7<c<3.3; 0.001≤x≤0.5; 1.7<y<2.5; 4<z<7 and 0≤p≤5, respectively, B represents at least one univalent cation selected from group, consisting of Na+, NH4 +, K+ and H3O+, total value (1b+3c), obtained by multiplication of valencies by number of cation moles, satisfies inequality 8<(1b+3c)<12, and A represents anion of organic acid; [AgaBb-a]b[M3-cAlc](SO4)y(OH)2-pH2O (Y- I), where a, b, c, y, z and p satisfy inequalities 0.00001≤a<0.5; 0.8≤b≤1.35; 2.5≤c≤3; 1.7<y<2.5; 4<z<7 and 0≤p≤5, respectively, B represents at least one univalent cation, selected from group consisting of Na+, NH4 +, K+ and H3O+, and M represents Ti or Zn. Said antibacterial medication of claimed invention, after its mixing with resin, is used to obtain antibacterial polymer composition, used for production of moulded products, film, nonwoven material, coating, sealant, as well as antifungal medications, antibacterial paper, antibacterial deodorants in form of sprays and agrochemicals. Method of obtaining said antibacterial medication includes stages: addition of water alkali solution, which has univalent cation, and organic acid to mixed solution of aluminium sulfate and/or nitrate, which has univalent cation, in order to initiate hydrothermal reaction with obtaining particles of aluminium sulfate hydroxide, which contain anion of organic acid; and contact of obtained particles with silver-containing water solution in mixing, in order to initiate reaction of ion exchange of several cations of said particles with silver ions.
EFFECT: obtaining antibacterial medication, which possesses high degree of dispersancy, transparency, whiteness and excellent antibacterial properties, especially ability to preserve its antibacterial activity after contact with water.
43 cl, 35 tbl, 21 dwg
Authors
Dates
2010-11-10—Published
2006-06-30—Filed