СПОСОБ ПОЛУЧЕНИЯ ДРОБЛЕНОГО УГЛЕРОДНОГО АДСОРБЕНТА ИЗ ПОЛИМЕРНОГО СЫРЬЯ Российский патент 2010 года по МПК C01B31/08 

Описание патента на изобретение RU2404919C1

Изобретение относится к производству дробленых углеродных адсорбентов (активных углей) из полимерного сырья, предназначенных для глубокой санитарной очистки газовых и жидких промышленных отходов от средне- и высокомолекулярных соединений.

Известен способ получения углеродных адсорбентов из термореактивных полимеров путем формования гранул, их отверждения, карбонизации и активации (см. патент РФ № 2073642, кл. С01В 31/08, опубл. 20.02.97, бюл. № 5). Однако адсорбент, изготавливаемый по данному способу, характеризуется низкими показателями величин адсорбции по высокомолекулярным и среднемолекулярным веществам вследствие наличия мелких микропор с r=0,6-0,7 нм и отсутствия пор с радиусами выше 0,8 нм. Кроме того, данный способ сложен в исполнении и экологически небезопасен.

Наиболее близким к предлагаемому способу по технической сущности и количеству совпадающих признаков является способ получения сферического углеродного адсорбента на основе полимерного сырья, включающий смешение фурфурола, эпоксидной смолы и серной кислоты, формование сферических гранул при 90-120°С, их отверждение под слоем масла в течение 2-10 часов, карбонизацию при температуре от 650 до 850°С, парогазовую активацию (см. патент РФ № 2257343, кл. С01В 31/08, опубл. 24.09.2004 г., бюл. № 21).

Этот способ принят за прототип предлагаемого изобретения. Недостатком прототипа является низкая адсорбционная активность по высокомолекулярным веществам как из газовых, так и жидких сред, а также недостаточная электропроводимость.

Целью изобретения является повышение адсорбционной емкости по высокомолекулярным веществам типа метиленового голубого и мелассы, а также повышение электропроводимости.

Указанная цель достигается предложенным способом, включающим смешение фурфурола с эпоксидной смолой и серной кислотой, отверждение смеси, карбонизацию и активацию, причем отверждение проводят при температуре 150-170°С с выдержкой в течение 12-15 часов, перед карбонизацией осуществляют дробление до размера частиц 0,2-3,5 мм, а карбонизацию ведут до температуры 450-500°С.

Отличие предложенного способа от прототипа состоит в том, что отверждение проводят при температуре 150-170°С с выдержкой в течение 12-15 часов, а перед карбонизацией осуществляют дробление с выделением частиц, имеющих размер 0,2-3,5 мм, и карбонизацию ведут до температуры 450-500°С.

Анализ патентной и научно-технической литературы показывает, что предлагаемый способ получения углеродных адсорбентов является новым.

Сущность изобретения заключается в следующем. Сорбция любого типа веществ определяется параметрами микропористой структуры адсорбентов - объемом, размером и соотношением основных типов микро- и мезопор, в то время как макропоры ответственны за кинетику процесса.

Эффективное поглощение таких относительно крупных и разветвленных молекул, как метиленовый голубой или меласса, обеспечивается системой супермикропор (r=1,4-1,6 нм) и мезопор (r=1,8-2,0 нм).

Как показали наши эксперименты, такая пористая структура применительно к полимерному сырью обусловливается подбором оптимальных режимов отверждения, карбонизации и активации в совокупности с размером обрабатываемых частиц.

Варьируя указанными параметрами, в результате большого количества экспериментов мы получили углеродные адсорбенты с высокой активностью по заданным веществам, а именно мелассе и метиленовому голубому.

Высокие электропроводящие свойства углеродных адсорбентов в данном случае обеспечиваются развитием большого объема мезопор.

Способ осуществляют следующим образом. Берут фурфурол и смешивают его в смесителе, снабженном мешалкой, с эпоксидной смолой. Затем добавляют серную кислоту (катализатор), хорошо перемешивают и выливают в противни (высота слоя 5-8 см). Противни помещают в сушильный шкаф и нагревают до температуры 150-170°С. Выдержка при данной температуре составляет 12-15 часов. Полимерная смесь затвердевает.

После отверждения куски вынимают из противня и раздрабливают до размера частиц 0,2-3,5 мм, затем частицы помещают в ретортную печь и карбонизуют до температуры 450-500°С при скорости нагрева 2-4°С/мин в потоке диоксида углерода. После достижения температуры 500°С частицы загружают во вращающуюся печь и активируют до обгара 55-62%. Температура активации составляет 850-950°С. Выгруженные после активации частицы имеют адсорбционную активность:

- по метиленовому голубому 380-390 мг/г (ГОСТ 4453);

- по мелассе 115-130% (ГОСТ 4453);

- электропроводимость - 995÷1350 Ф/г.

Соответствующие данные для углеродных адсорбентов, получаемых по прототипу (патент РФ № 2257343, Кл. С01В 31/08) составляют:

- метиленовый голубой - 80-100 мг/г, меласса 94%, электропроводимость - 810 Ф/г.

Следующие примеры поясняют сущность изобретения.

Пример 1. Готовят смесь, состоящую из 200 объемных частей фурфурола, 4,0 объемных частей эпоксидной смолы марки ЭД-20 и 14 объемных частей серной кислоты. Смешение компонентов проводят в бетономешалке в течение 8-10 минут. После чего разливают в противни, которые помещают в термошкаф, который нагревают до температуры 150°С, и выдерживают в течение 12 часов, затвердевшую полимерную массу выгружают из противней и осуществляют дробление до размера частиц 0,2-3,5 мм.

Частицы затвердевшей полимерной массы (с размером 0,2 мм) подвергают карбонизации путем нагрева ретортной печи до 450°С со скоростью 2°С/мин. Карбонизацию проводят в потоке диоксида углерода и после выдержки при конечной температуре в течение 20 минут их остужают и перегружают в печь для активации, которую ведут при 900°С в потоке водяного пара. Расход водяного пара составляет 3-5 кг/час. После достижения обгара 55% частицы остужают и тестируют. Адсорбционная активность по метиленовому голубому для таких адсорбентов составляет 385 мг/г, по мелассе 115%, электропроводимость - 995 Ф/г.

Пример 2. Способ осуществляют аналогично Примеру 1, за исключением того, что отверждение полимерной композиции ведут при температуре 170°С с выдержкой 15 часов, карбонизацию проводят до температуры 500°С со скоростью нагрева 4°С/мин с выдержкой при конечной температуре в течение 40 минут, размер частиц, взятых для карбонизации, составляет 3,5 мм.

Адсорбционная способность полученного угля по метиленовому голубому составляет 290 мг/г, по мелассе 130%, электропроводимость - 1350 Ф/г.

Пример 3. Способ осуществляют аналогично Примеру 1, за исключением того, что отверждение проводят при температуре 160°С в течение 13,5 часа, для карбонизации берут частицы с размером 1,8 мм, которые нагревают до 475°С со скоростью 3°С/мин и выдерживают при этой температуре 30 минут.

Адсорбционная способность по метиленовому голубому такого угля составляет 295 мг/г, по мелассе 125%, электропроводимость - 1200 Ф/г.

Таким образом, предложенный способ позволяет почти вдвое увеличить адсорбционную способность по метиленовому голубому, на 30-40% повысить емкость по мелассе и на 40% поднять электропроводимость.

В случае снижения температуры отверждения ниже 150°С происходит неполная полимеризация исходных мономеров, обусловливающая снижение объемов крупных и мезопор, а при повышении температуры выше 170°С формируются тонкие входы в микропоры, которые не могут эффективно адсорбировать крупные молекулы метиленового голубого и мелассы.

Относительно влияния размера частиц и режима карбонизации.

Понижение температурного интервала карбонизации менее 450°С не обеспечивает разложения полимеров, что в свою очередь при дальнейшей активации приводит к вспучиванию частиц, падению их насыпной плотности и формированию больших объемов макропор. Повышение температуры карбонизации выше 500°С обусловливает чрезмерную усадку углеродного скелета, образовавшегося за счет удаления органических летучих веществ и формирование микропор мелких размеров.

Увеличение размера частиц более 3,5 мм приводит к удлинению пути выделения летучих и вероятности образования «пироуглерода» («эффект захлопывания пор»), уменьшение размеров частиц менее 0,2 мм ухудшает электропроводимость продукта и приводит к большим энергозатратам при активации.

Таким образом, предложенный способ позволяет получить активный уголь с высокими показателями электропроводимости и адсорбционной активности по загрязнителям, характеризующийся большими и разветвленными молекулами.

Из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на решение поставленной задачи, а вся совокупность является достаточной для характеристики заявляемого технического решения.

Похожие патенты RU2404919C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 2003
  • Гурьянов В.В.
  • Мухин В.М.
  • Чебыкин В.В.
  • Дворецкий Г.В.
RU2257343C2
Способ получения активного угля 2018
  • Клушин Виталий Николаевич
  • Мухин Виктор Михайлович
  • Ву Ким Лонг
  • Нистратов Алексей Викторович
RU2700067C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВИРОВАННОГО МОДИФИЦИРОВАННОГО УГЛЯ 2016
  • Сергеев Виктор Владимирович
  • Папурин Николай Михайлович
  • Грушанин Александр Иванович
  • Кащеев Юрий Михайлович
  • Тодоров Димитьр Тодоров
RU2622660C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 2006
  • Гурьянов Василий Васильевич
  • Осипова Ангелина Васильевна
  • Третьяков Александр Сократович
  • Утенков Евгений Дмитриевич
  • Быков Анатолий Алексеевич
RU2301701C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВНОГО УГЛЯ 2009
  • Мухин Виктор Михайлович
  • Соловьев Сергей Николаевич
  • Зубова Инна Дмитриевна
  • Гаврилов Эдуард Федорович
  • Чумаков Владимир Павлович
  • Зубова Ирина Николаевна
RU2412112C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 1994
  • Чиликин Вячеслав Евгеньевич
  • Мушаров Замил Ахмедзянович
  • Гурьянов Василий Васильевич
  • Бакунина Наталья Михайловна
RU2085486C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО АКТИВНОГО УГЛЯ 2006
  • Передерий Маргарита Алексеевна
  • Маликов Игорь Николаевич
  • Кураков Юрий Иванович
  • Карасева Мария Сергеевна
  • Носкова Юлия Ивановна
RU2331580C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВНОГО УГЛЯ ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ 2015
  • Клушин Виталий Николаевич
  • Си Тху Аунг
  • Мухин Виктор Михайлович
  • Со Вин Мьинт
  • Нистратов Алексей Викторович
  • Воропаева Надежда Леонидовна
RU2609802C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 1992
  • Гурьянов В.В.
  • Гурьянова Л.Н.
  • Саухин Н.А.
  • Иванова Н.И.
  • Этцель М.С.
  • Назаров В.Л.
RU2019503C1
СПОСОБ ПОЛУЧЕНИЯ АДСОРБЦИОННО-АКТИВНОГО УГЛЕРОДНОГО ПРОДУКТА ИЗ ТЕКСТОЛИТА 2011
  • Васьковский Евгений Борисович
  • Гурьянов Василий Васильевич
  • Кателевский Вадим Яковлевич
  • Осипова Ангелина Васильевна
RU2470858C1

Реферат патента 2010 года СПОСОБ ПОЛУЧЕНИЯ ДРОБЛЕНОГО УГЛЕРОДНОГО АДСОРБЕНТА ИЗ ПОЛИМЕРНОГО СЫРЬЯ

Изобретение относится к области получения активных углей. Предложен способ получения дробленого углеродного адсорбента из полимерного сырья, включающий смешение фурфурола с эпоксидной смолой и серной кислотой, отверждение путем нагревания композиции до 150-170°С с выдержкой в течение 12-15 часов, дробление, карбонизацию при 450-500°С и активацию. Способ позволяет получать низкозольные адсорбенты с повышенной адсорбционной емкостью по высокомолекулярным трудноудаляемым загрязнителям и с повышенной электроемкостью.

Формула изобретения RU 2 404 919 C1

Способ получения углеродного адсорбента, включающий смешение фурфурола с эпоксидной смолой и серной кислотой, отверждение смеси, карбонизацию и активацию, отличающийся тем, что отверждение проводят путем выдерживания смеси при 150-170°С в течение 12-15 ч, после чего осуществляют дробление отвержденной смеси с получением частиц размером 0,2-3,5 мм, которые подвергают карбонизации при 450-500°С в потоке диоксида углерода и активируют до достижения обгара 55-62%.

Документы, цитированные в отчете о поиске Патент 2010 года RU2404919C1

СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 2003
  • Гурьянов В.В.
  • Мухин В.М.
  • Чебыкин В.В.
  • Дворецкий Г.В.
RU2257343C2
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 2006
  • Гурьянов Василий Васильевич
  • Осипова Ангелина Васильевна
  • Третьяков Александр Сократович
  • Утенков Евгений Дмитриевич
  • Быков Анатолий Алексеевич
RU2301701C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 1993
  • Гурьянов В.В.
  • Мушаров З.А.
  • Мухин В.М.
  • Васильев Н.П.
  • Голубев В.П.
  • Казанцев Б.П.
  • Карев В.А.
  • Работинский Н.И.
  • Смирнов В.Ф.
  • Соснихин В.А.
  • Чебыкин В.В.
  • Чиликин В.Е.
RU2026813C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 1992
  • Гурьянов В.В.
  • Гурьянова Л.Н.
  • Саухин Н.А.
  • Иванова Н.И.
  • Этцель М.С.
  • Назаров В.Л.
RU2019503C1
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО УГЛЕРОДНОГО АДСОРБЕНТА 1982
  • Гурьянов В.В.
  • Бакунина Н.М.
  • Смирнов В.Ф.
  • Щербаков В.П.
  • Беляев М.П.
  • Воловик Г.И.
  • Кондратенко Р.П.
RU2073642C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВНОГО УГЛЯ 1998
  • Гурьянов В.В.
  • Дворецкий Г.В.
  • Киреев С.Г.
  • Крайнова О.Л.
  • Максимова Л.М.
  • Мухин В.М.
  • Смирнов В.Ф.
  • Чебыкин В.В.
RU2145938C1

RU 2 404 919 C1

Авторы

Мухин Виктор Михайлович

Гурьянов Василий Васильевич

Зубова Инна Дмитриевна

Баранов Александр Михайлович

Даты

2010-11-27Публикация

2009-08-24Подача