КАТАЛИЗАТОР ДЛЯ ОБРАБОТКИ ВЫХЛОПНОГО ГАЗА И СИСТЕМА ДЛЯ ОБРАБОТКИ ВЫХЛОПНОГО ГАЗА Российский патент 2010 года по МПК B01J23/652 B01J23/648 B01J21/06 B01D53/86 B01D53/94 B01J37/02 B01J37/04 

Описание патента на изобретение RU2406567C1

Область техники

Настоящее изобретение относится к катализатору для обработки выхлопного газа и к системе для обработки выхлопного газа.

Уровень техники

С целью денитрирования выхлопного газа в качестве восстанавливающего агента для разложения оксидов азота (NOx) до азота (N2) и водяного пара (H2O) используют аммиак (NH3). В этой реакции денитрирования с целью повышения скорости реакции и эффективности реакции используют катализатор DeNOx (денитрирования). Для повышения скорости разложения NOx необходимо лишь при добавлении NH3 повысить мольное отношение NH3/NOx. Однако, если мольное отношение NH3/NOx чрезмерно увеличено, непрореагировавший аммиак может примешиваться к выхлопному газу. Попадая в атмосферу, образующийся таким образом выхлопной газ может из-за утечки аммиака создавать вторичное загрязнение и т.п.

Для этой цели известен очищающий выхлопной газ катализатор, имеющий каталитический слой для окисления непрореагировавшего аммиака, типа того, который раскрыт в JP 3436567 В.

Такой очищающий выхлопной газ катализатор содержит слой катализатора DeNOx толщиной приблизительно 0,5 мм, образованный с использованием эмульсии катализатора DeNOx. Этот слой является существенным для обеспечения реакции денитрирования. Однако утолщение слоя катализатора DeNOx повышает падение давления, что ухудшает эффективность работы установки. Другой причиной утолщения слоя катализатора DeNOx является то, что слой носителя катализатора не может использоваться как очищающий выхлопной газ катализатор.

Раскрытие изобретения

Проблема, которую должно решить изобретение

Настоящее изобретение выполнено с учетом описанной выше ситуации. Целью настоящего изобретения является создание катализатора для обработки выхлопного газа и системы для обработки выхлопного газа, способной снижать степень утечки аммиака, сохраняя при этом достаточную эффективность удаления NOx, включающую базовый катализаторный материал и покровный слой, где указанный покровный слой имеет уменьшенную толщину по сравнению с толщиной базового катализаторного материала.

Средства решения проблемы

Для достижения указанной цели отличительной чертой настоящего изобретения может быть катализатор для обработки выхлопного газа, способный каталитически удалять из выхлопного газа оксиды азота с использованием аммиака в качестве восстанавливающего агента, разлагая и удаляя при этом непрореагировавший аммиак, причем катализатор включает пористый базовый катализаторный материал, содержащий оксид титана и, по меньшей мере, одно соединение, выбираемое из группы, состоящей из оксидов ванадия (V), оксидов вольфрама (W) и оксидов молибдена (Мо); и покровный слой, образованный на поверхности пористого базового катализаторного материала, причем указанный покровный слой содержит платину на титаноксидном носителе.

В одном из своих аспектов настоящее изобретение может представлять собой катализатор для обработки выхлопного газа, способный каталитически удалять из выхлопного газа оксиды азота с использованием аммиака в качестве восстанавливающего агента, разлагая и удаляя при этом непрореагировавший аммиак, который (катализатор) получают путем смешивания первой катализаторной суспензионной смеси, содержащей платину, нанесенную на оксид титана, со второй катализаторной суспензионной смесью, приготовленной из оксида титана и, по меньшей мере, одного соединения, выбираемого из группы, состоящей из оксидов ванадия (V), оксидов вольфрама (W) и оксидов молибдена (Мо), с образованием суспензионной смеси, и последующего нанесения этой суспензионной смеси на поверхность пористого базового катализаторного материала.

Предпочтительно, чтобы покровный слой содержал платину в количестве от 0,05 до 0,1 вес.% в расчете на общее количество оксида титана и платины (Pt), содержащихся в покровном слое.

В катализаторе для обработки выхлопного газа согласно настоящему изобретению толщина покровного слоя может преимущественно составлять от 100 до 300 μм.

В одном из предпочтительных вариантов осуществления катализатора для обработки выхлопного газа согласно настоящему изобретению платина в покровном слое может быть изолирована от оксидов ванадия.

В еще одном из своих аспектов, настоящее изобретение может представлять систему для обработки выхлопного газа, способную каталитически удалять из выхлопного газа оксиды азота с использованием аммиака в качестве восстанавливающего агента, разлагая и удаляя при этом непрореагировавший аммиак, в которой (системе) катализатор DeNOx размещен на стороне, находящейся выше по потоку газа, а катализатор для обработки выхлопного газа настоящего изобретения размещен ниже по потоку от катализатора DeNOx.

Эффект изобретения

Настоящее изобретение предлагает катализатор для обработки выхлопного газа и систему для обработки выхлопного газа, имеющие покровный слой с уменьшенной толщиной по сравнению с толщиной базового катализаторного материала и уменьшенной степенью утечки аммиака при сохранении достаточной эффективности удаления NOx.

Наилучший способ осуществления изобретения

Катализатор для обработки выхлопного газа и система для обработки выхлопного газа согласно настоящему изобретению далее будут описаны более детально со ссылками на варианты их осуществления.

Пористый базовый катализаторный материал

В катализаторе для обработки выхлопного газа согласно настоящему изобретению в качестве базового материала используется пористый базовый катализаторный материал. Пористым базовым катализаторным материалом преимущественно является пористый сотовый базовый катализаторный материал.

Более конкретно, пористый базовый катализаторный материал получают с использованием в качестве исходных материалов оксида титана и, по меньшей мере, одного соединения, выбранного из оксидов ванадия (V), оксидов вольфрама (W) и оксидов молибдена (Мо).

Как правило, исходные материалы смешивают преимущественно при атомном отношении V/W/Ti, составляющем (от 0,1 до 0,6)/(от 3 до 9)/(от 70 до 80), или при атомном отношении V/Mo/Ti, составляющем (от 0,1 до 0,6)/(от 3 до 9)/(от 70 до 80).

Базовый материал, содержащий компонент катализатора DeNOx, готовят, например, с использованием следующих операций: добавление водного аммиака к суспензии метатитановой кислоты; добавление заданного количества порошка паравольфрамата аммония; замешивание полученной смеси; высушивание и прокаливание замешанной массы с образованием катализаторного порошка; нанесение полученного катализаторного порошка и, если необходимо, дополнительное прессование в месильной машине; замешивание полученной смеси вместе с адекватным количеством воды; экструдирование полученной массы; высушивание и последующее прокаливание экструдата. Полученный таким образом базовый материал предпочтительно дорабатывают так, чтобы он имел объем пор от 0,25 до 0,40 г/см3.

Пористый базовый катализаторный материал служит в качестве катализатора DeNOx для разложения как оксидов азота (NOx), происходящих из выхлопного газа, так и оксидов азота, образующихся в процессе разложения аммиака.

В катализаторе для обработки выхлопного газа согласно настоящему изобретению пористый базовый катализаторный материал служит в качестве катализатора DeNOx. Поскольку он разлагает непрореагировавший аммиак, разлагая в то же время образующиеся в процессе разложения аммиака оксиды азота (NOx), он не утрачивает денитрирующей эффективности.

Покровный слой, содержащий оксид титана с нанесенной на него платиной

В катализаторе для обработки выхлопного газа согласно настоящему изобретению покровный слой образуют на приготовленном как изложено выше пористом базовом катализаторном материале. Этот покровный слой содержит оксид титана с нанесенной на него платиной.

Покровный слой может быть образован как единый слой, содержащий оксид титана с нанесенной на него платиной в качестве окисляющего аммиак катализатора, и катализатор DeNOx.

Способ приготовления катализатора, имеющего покровный слой, для обработки выхлопного газа

Покровный слой получают приготовлением катализаторной суспензии, нанесением ее на пористый базовый катализаторный материал и прокаливанием полученного материала. Ниже приводится один из примеров этого способа.

В одном из вариантов осуществления этого способа сферический оксид титана (имеющий диаметр от 2 до 4 мм) пропитывают в водном растворе, содержащем платину, таком как водный раствор хлорида платины (H2PtCl6), с целью образования покровного слоя от 0,05 до 0,1 вес % Pt на сферическом оксиде титана. Полученный после сушки оксид титана прокаливают в течение 3-5 час при температуре от 450 до 500°С, в результате чего получают порошкообразный катализатор 1. К полученному порошкообразному катализатору 1 добавляют воду и подвергают размолу на влажной шаровой мельнице, получая катализаторную суспензию 1 (катализаторную суспензию для окисления аммиака).

Аналогичным образом добавляют воду к порошкообразному катализатору 2, полученному смешением, по меньшей мере, одного соединения, выбранного из оксидов ванадия, оксидов вольфрама и оксидов молибдена, с оксидом титана, и размолом полученной смеси на влажной шаровой мельнице, в результате чего получают катализаторную суспензию 2 (суспензию катализатора DeNOx). В этом случае предпочтительно смешивать оксиды при атомном отношении V/W/Ti, равном (от 0,1 до 0,6)/(от 3 до 9)/(от 70 до 80) или при атомном отношении V/Mo/Ti, равном (от 0,1 до 0,6)/(от 3 до 9)/(от 70 до 80).

Катализаторную суспензию 3 приготовляют смешением от 30 до 40 вес. частей катализаторной суспензии 1 и от 60 до 70 вес. частей катализаторной суспензии 2, каждую из которых доводят до одной и той же концентрации суспензии.

Пористый базовый катализаторный материал, например пористый сотовый базовый катализаторный материал, пропитывают в катализаторной суспензии 3. Полученный после сушки катализатор прокаливают в течение 3-5 час при температуре от 450 до 500°С. Катализаторную суспензию 3 наносят на поверхность базового материала в количестве от 85 до 115 г (толщина покровного слоя от 85 до 115 µм) на 1 м2 площади поверхности базового материала. Полученный таким образом бифункциональный катализатор является катализатором для обработки выхлопного газа, имеющим на пористом базовом катализаторном материале покровный слой, состоящий из единого слоя, содержащего оксид титана с нанесенной на него платиной, т.е. катализатор окисления аммиака и катализатор DeNOx.

Если покровный слой выполнен, как это описано выше, из единого слоя, то, чтобы повысить каталитическую активность платины в отношении окисления аммиака, предпочтительно изолировать платину от оксидов ванадия.

Катализатор для обработки выхлопного газа согласно настоящему изобретению действует как катализатор для каталитического удаления из выхлопного газа оксидов азота с использованием аммиака в качестве восстанавливающего агента, в процессе чего указанный катализатор также разлагает и удаляет непрореагировавший аммиак. Короче говоря, катализатор осуществляет реакцию денитрирования и окислительного разложения аммиака, как это описано ниже.

Реакция денитрирования

Реакция окислительного разложения аммиака

Катализатор для обработки выхлопного газа согласно настоящему изобретению может быть использован в системе обработки выхлопного газа. Такая система для обработки выхлопного газа является системой обработки выхлопного газа для каталитического удаления из выхлопного газа оксидов азота с использованием аммиака в качестве восстанавливающего агента при одновременном разложении и удалении непрореагировавшего аммиака. В одном из своих конкретных вариантов система для обработки выхлопного газа может быть выполнена размещением катализатора DeNOx на стороне, расположенной выше по потоку газа и последующим размещением катализатора для обработки выхлопного газа согласно настоящему изобретению ниже по потоку от катализатора DeNOx.

Такая система для обработки выхлопного газа имеет преимущество в том, что уменьшается утечка NH3 по сравнению с тем, что имеет место при использовании лишь одного катализатора DeNOx.

Пример 1

Сферический оксид титана (имеющий диаметр от 2 до 4 мм) пропитывают в водном растворе хлорида платины (H2PtCl6) с целью нанесения 0,05 вес.% платины (Pt) на сферический оксид титана. Полученный после сушки оксид титана прокаливают в течение 5 час при 500°С, в результате чего получают порошкообразный катализатор 1. К полученному порошкообразному катализатору 1 (катализатору окисления аммиака) добавляют воду, после чего размалывают на влажной шаровой мельнице, получая катализаторную суспензию 1. Аналогичным образом добавляют воду к порошкообразному катализатору 2 (катализатору DeNOx), состоящему из 0,6 вес.% оксидов ванадия, 9 вес.% оксидов вольфрама и 80 вес.% оксида титана, после чего полученную смесь размалывают на влажной шаровой мельнице, получая катализаторную суспензию 2.

Катализаторную суспензию 3 приготовляют смешением 35 вес. частей катализаторной суспензии 1 и 65 вес. частей катализаторной суспензии 2, каждую из которых доводят до одной и той же концентрации суспензии. Пористый сотовый базовый катализаторный материал (действующий как катализатор DeNOx), служащий в качестве пористого базового катализаторного материала и состоящий из 0,6 вес. частей оксидов ванадия, 9 вес.% оксидов вольфрама и 80 вес.% оксида титана, пропитывают в катализаторной суспензии 3. Полученный катализатор высушивают и затем прокаливают в течение 5 час при 500°С.

Катализаторную суспензию 3 наносят на базовый материал в количестве 100 г (толщина покровного слоя примерно 100 µм) на 1 м2 площади поверхности базового материала и полученный сотовый катализатор для обработки выхлопного газа обозначают как бифункциональный катализатор 1.

Пример 2

Бифункциональный катализатор 2 получен подобно тому, как получен бифункциональный катализатор 1, за исключением того, что количество нанесенной платины (Pt) изменено на 0,1 вес.%.

Сравнительный пример 1

Катализатор DeNOx с TiO2-V2O5-WO3 (массовое отношение TiO2/V2О5/WO3=80:0,6:9) получают следующим образом.

К 3600 г суспензии метатитановой кислоты (с содержанием ТiO2 30 вес.%) добавляют водный аммиак с содержанием NH3 25% для доводки рН до 6,5. К полученной смеси добавляют порошок паравольфрамата аммония до доведения содержания WO3 9 вес.% и полученную таким образом смесь подвергают влажному замешиванию в течение 2 час. Полученную массу сушат и затем прокаливают в течение 5 час при 550°С, получая порошок, состоящий из оксида титана и оксида вольфрама. К полученному порошку добавляют водный раствор метаванадата аммония до содержания V2O5 0,6 вес.%. Полученную смесь тщательно смешивают, сушат и прокаливают в течение 4 час при 450°С, получая порошок (А), состоящий из оксида титана (TiO2), оксида ванадия (V2O5) и оксида вольфрама (WO3). В месильную машину загружают 1000 г порошка (А), 25 г карбоксиметилцеллюлозы и 12,5 г полиэтиленоксида. Добавляют к полученной смеси нужное количество воды и месят в течение 30 мин. Полученную замешанную массу экструдируют с образованием листа размером 50 мм2, который сушат и затем прокаливают в течение 5 час при 500°С.

Сравнительный пример 2

Приготовляют катализатор подобно тому, как в примере 1, за исключением использования вместо водного раствора хлорида платины (H2PtCl6) водного раствора хлорида палладия.

Произведено испытание рабочих характеристик бифункциональных катализаторов 1, 2 и 5 и катализатора DeNOx.

Испытание рабочих характеристик производили при следующих условиях:

Температура выхлопного газа: 380°С

Скорость потока выхлопного газа: 2,3 нм/с

Концентрация NOx: 500 ч/млн

Результаты приведены в таблице 1

Таблица 1 Катализатор Температура (°С) Рабочие характеристики катализатора Эффективность денитрирования, % Концентрация утечки NH3 (ч/млн) Пример 1 Бифункциональный катализатор 1 380 95 2 Пример 2 Бифункциональный катализатор 2 380 95 3 Сравнительный пример 1 Катализатор DeNOx 380 95 8 Сравнительный пример 2 Бифункциональный катализатор 5 380 95 8

Применение катализатора для обработки выхлопного газа согласно настоящему изобретению позволяет снизить концентрацию утечки аммиака при одновременной эффективности денитрирования 95%, а также позволяет уменьшить толщину покровного слоя.

Похожие патенты RU2406567C1

название год авторы номер документа
КАТАЛИЗАТОР ДЛЯ ХОЛОДНОГО ЗАПУСКА И ЕГО ПРИМЕНЕНИЕ В ВЫХЛОПНЫХ СИСТЕМАХ 2014
  • Чэнь Хай-Ин
  • Раджарам Радж Рао
  • Лю Дунся
RU2692809C1
КАТАЛИТИЧЕСКОЕ ИЗДЕЛИЕ ДЛЯ ПРИМЕНЕНИЯ В СИСТЕМЕ ОБРАБОТКИ ВЫХЛОПНЫХ ГАЗОВ 2019
  • Арулрадж, Канешалингхам
  • Чандлер, Гай Ричард
  • Леппельт, Райнер
  • Ньюман, Эндрю
RU2784964C2
КАТАЛИЗАТОР ДЛЯ ОБРАБОТКИ ВЫХЛОПНЫХ ГАЗОВ 2009
  • Ноти Кацуми
  • Обаяси
  • Киёсава Масаси
RU2429908C1
ВЫХЛОПНАЯ СИСТЕМА С МОДИФИЦИРОВАННОЙ ЛОВУШКОЙ NO В УСЛОВИЯХ ОБЕДНЕННОЙ СМЕСИ 2015
  • Суоллоу Дэниэл
  • Рид Стюарт
  • Филипс Пол
  • Уайли Джеймс
RU2688085C2
СИСТЕМА ОБРАБОТКИ ВЫХЛОПНОГО ГАЗА 2016
  • Ксюе, Вен-Мей
  • Хочмат, Джон К.
RU2732441C2
СИСТЕМА ВЫПУСКА ОТРАБОТАВШИХ ГАЗОВ БЕЗ ДИЗЕЛЬНОГО КАТАЛИЗАТОРА ОКИСЛЕНИЯ (DOC), ИМЕЮЩАЯ КАТАЛИЗАТОР ПРОСКОКА АММИАКА (ASC), ДЕЙСТВУЮЩИЙ, КАК DOC, В СИСТЕМЕ С КАТАЛИЗАТОРОМ СЕЛЕКТИВНОГО КАТАЛИТИЧЕСКОГО ВОССТАНОВЛЕНИЯ (SCR) ПЕРЕД ASC 2016
  • Ларссон, Микаэль
RU2734384C2
СПОСОБ И КАТАЛИЗАТОР ДЛЯ ОДНОВРЕМЕННОГО УДАЛЕНИЯ МОНООКСИДА УГЛЕРОДА И ОКСИДОВ АЗОТА ИЗ ДЫМОВЫХ ИЛИ ВЫХЛОПНЫХ ГАЗОВ 2014
  • Кастеллино Франческо
  • Лукассен Хансен Вигго
RU2657082C2
СПОСОБ ОЧИСТКИ ВЫХЛОПНОГО ГАЗА ДВИГАТЕЛЯ С ВОСПЛАМЕНЕНИЕМ ОТ СЖАТИЯ 2015
  • Габриэльсон Пэр Л.Т.
RU2687854C2
КАТАЛИЗАТОР ОБРАБОТКИ ПРОСКОЧИВШЕГО АММИАКА 2014
  • Федейко Джозеф Майкл
  • Доура Кевин
  • Вайгерт Эрих Конлан
  • Кокс Джулиан Питер
  • Чэнь Хай-Ин
  • Андерсен Пол Джозеф
RU2675363C2
КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ВЫХЛОПНОГО ГАЗА 2015
  • Чэндлер Гай Ричард
  • Чэнь Хай-Ин
  • Коллир Джиллиан Элэйн
  • Федейко Джозеф Майкл
  • Грин Александр Николас Майкл
RU2724261C2

Реферат патента 2010 года КАТАЛИЗАТОР ДЛЯ ОБРАБОТКИ ВЫХЛОПНОГО ГАЗА И СИСТЕМА ДЛЯ ОБРАБОТКИ ВЫХЛОПНОГО ГАЗА

Изобретение относится к катализатору для обработки выхлопного газа и к системе для обработки выхлопного газа. Описан катализатор для обработки выхлопного газа, способный каталитически удалять оксиды азота при использовании аммиака в качестве восстанавливающего агента, разлагая и удаляя при этом непрореагированный аммиак, содержащий пористый базовый катализаторный материал, содержащий оксид титана и, по меньшей мере, одно соединение, выбранное из группы, состоящей из оксидов ванадия (V), оксидов вольфрама (W) и оксидов молибдена (Мо); и покровный слой, образованный на поверхности пористого базового катализаторного материала, содержащий платину, нанесенную на оксид титана. Описана система для обработки выхлопного газа, способная каталитически удалять из выхлопного газа оксиды азота при использовании аммиака в качестве восстанавливающего агента при одновременном разложении и удалении непрореагированного аммиака, в которой катализатор DеNОх (денитрования) расположен выше по потоку газа, а катализатор для обработки выхлопного газа, описанный выше, расположен ниже по потоку от катализатора DeNOx. Технический эффект - снижение степени утечки аммиака, сохранение при этом достаточной эффективности удаления оксидов азота при уменьшенной толщине покровного слоя. 2 н. и 3 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 406 567 C1

1. Катализатор для обработки выхлопного газа, способный каталитически удалять из выхлопного газа оксиды азота при использовании аммиака в качестве восстанавливающего агента, разлагая и удаляя при этом непрореагировавший аммиак, который содержит
пористый базовый катализаторный материал, содержащий оксид титана и, по меньшей мере, одно соединение, выбранное из группы, состоящей из оксидов ванадия (V), оксидов вольфрама (W) и оксидов молибдена (Мо); и покровный слой, образованный на поверхности пористого базового катализаторного материала, причем указанный покровный слой содержит платину, нанесенную на оксид титана.

2. Катализатор для обработки выхлопного газа по п.1, полученный смешением первой катализаторной суспензии, содержащей платину, нанесенную на оксид титана, со второй катализаторной суспензией, приготовленной из оксида титана и, по меньшей мере, одного соединения, выбранного из группы, состоящей из оксидов ванадия (V), оксидов вольфрама (W) и оксидов молибдена (Мо), с образованием суспензионной смеси, и последующим нанесением этой суспензионной смеси на поверхность пористого базового катализаторного материала.

3. Катализатор для обработки выхлопного газа по п.1 или 2, в котором покровный слой содержит платину в количестве от 0,05 до 0,1 вес.% в расчете на суммарное количество оксида титана и платины (Pt), содержащейся в покровном слое.

4. Катализатор для обработки выхлопного газа по п.1, в котором покровный слой имеет толщину от 100 до 300 мм.

5. Система для обработки выхлопного газа, способная каталитически удалять из выхлопного газа оксиды азота при использовании аммиака в качестве восстанавливающего агента, разлагая и удаляя при этом непрореагировавший аммиак, в которой катализатор DeNOx (денитрования) расположен выше по потоку газа, а катализатор для обработки выхлопного газа по любому из пп.1-4 расположен ниже по потоку от катализатора DeNOx.

Документы, цитированные в отчете о поиске Патент 2010 года RU2406567C1

JP 7016462 A, 20.01.1995
JP 7213903 A, 15.08.1995
УСТРОЙСТВО РАСКАЛЫВАНИЯ КЕДРОВОГО ОРЕХА 2000
  • Коровин В.М.
RU2191527C2
RU 98112921 A, 20.05.1999
US 2006133976 A1, 22.06.2006.

RU 2 406 567 C1

Авторы

Ноти Кацуми

Обаяси

Хаттори Акира

Даты

2010-12-20Публикация

2008-08-07Подача