Данное изобретение относится к способу удаления фильтрационных осадков, образовавшихся в нефтяных скважинах в ходе операций бурения, путем обработки указанных фильтрационных осадков водными растворами конкретных окислительных систем, эффективных также при низких температурах.
В последние несколько лет все возрастающий интерес был направлен на разработку новых жидкостей для бурения и обслуживания, способных ограниченно разрушать производственные образования, вызванные их использованием. Это происходит главным образом из-за образования на стенке скважины фильтрационных осадков, способных при бурении скважины уменьшить ввод используемых жидкостей и твердого вещества и/или продуктов в пористую матрицу. Однако после того, как скважина введена в эксплуатацию, для получения высоких значений производительности этот фильтрационный осадок следует полностью и однородным образом удалить.
Технологии удаления, доступные в настоящее время, основаны на использовании различных типов химических добавок, например кислот, хелатообразующих агентов, ферментов, окислителей.
В патенте США US-A-5507905 описан усовершенствованный способ удаления фильтрационных осадков путем использования неорганических пероксидов в качестве окисляющих агентов. Более конкретно, в способе согласно US-A-5607905 описано введение в фильтрационный осадок пероксидов щелочноземельных металлов или цинка с последующей обработкой вышеупомянутых фильтрационных осадков растворами кислот.
В US-A-5247995 описан способ удаления фильтрационных осадков, содержащих полисахариды, путем обработки водными растворами, содержащими ферменты, способные разложить полисахариды, или путем обработки окислителем, выбранным из неметаллических персульфатов.
Эти способы, в которых описано удаление фильтрационных осадков введением в них твердых предшественников окислительных агентов, не являются достаточно надежными, так как вышеупомянутые твердые вещества не являются полностью нерастворимыми при рабочих температурах. Таким образом, часть этих окислителей преждевременно высвобождается с последующей преждевременной деструкцией полимеров. Кроме того, эти составы имеют еще два недостатка, а именно их можно использовать только при высоких значениях рН и в отсутствии значительных количеств восстанавливающих агентов.
Наконец, в WO 00/08112 описан способ удаления фильтрационных осадков на основе полисахаридов путем обработки указанных фильтрационных осадков растворами солей, способных к образованию брома или бромата.
Все эти решения данной технической проблемы удаления фильтрационных осадков имеют тот недостаток, что они, кроме всего прочего, удовлетворительно работают лишь в вертикальных скважинах, характеризующихся высокими давлениями и умеренно высокими температурами.
Таким образом, в данной области техники имеется необходимость в растворах, которые являются в такой же или в большей степени эффективными, способны работать также при умеренно низких температурах и давлениях, особенно в более или менее обедненных горизонтальных скважинах, характеризующихся умеренно низкими давлениями и температурами.
Авторами разработан способ, который удовлетворяет вышеуказанным требованиям.
В соответствии с этим в данном изобретении предложен способ перевода в раствор полимерного материала, осажденного на пористой среде, который включает приведение указанного полимерного материала в контакт с водной композицией, причем указанная водная композиция включает:
(а) катализатор, выбранный из:
(а1) комплекса, имеющего общую формулу (I)
где n представляет собой целое число от 1 до 3;
Y независимо представляет собой группу анионной природы, связанную с Fe++ в ионную пару в качестве аниона, или же ковалентной связью «σ»-типа:
«s» выражает число групп Y, достаточное для нейтрализации формального состояния окисления Fe++ и равное 2, если все группы Y являются одновалентными;
L представляет собой лиганд, выбранный из групп, имеющих общую формулу (II)
где Х=СН, N;
R1 и R2, одинаковые или различные, выбраны из -Н, -СООН и С1-С5-алкильных радикалов, предпочтительно из Н и СООН;
(а2) растворимой в воде соли кобальта (2+), предпочтительно ацетата кобальта;
(b) окислитель, выбранный из:
(b1) пероксида водорода,
(b2) MHSO5, где М представляет собой щелочной металл, предпочтительно калий;
с тем ограничением, что катализатор (а1) можно использовать только в присутствии окислителя (b1), а катализатор (а2) можно использовать только в присутствии окислителя (b2).
Что касается полимерного материала, типичными примерами являются полисахариды, полиакриламиды, полиакриловая кислота и соответствующие сополимеры; ксантановая смола, амиды с различной степенью поперечной сшивки, целлюлоза.
Типичными примерами лигандов на основе карбоновых кислот, имеющих общую формулу (II), являются пиридин-2-карбоновая кислота, пиразин-2-карбоновая кислота, 2,6-пиридиндикарбоновая кислота, 2,3-пиразиндикарбоновая кислота. Предпочтительным соединением, имеющим общую формулу (II), является пиридин-2-карбоновая кислота.
Комплекс, имеющий общую формулу (I), можно формировать предварительно или, предпочтительно, формировать «in situ» путем добавления компонентов, то есть лиганда L и соли железа (II). В последнем случае можно использовать мольное соотношение между лигандом и Fe++ в диапазоне от 1/1 до 30/1, предпочтительно от 1/1 до 10/1.
Окислитель можно подавать совместно с водным раствором (I) или же после или до его подачи.
Если окислителем является пероксид водорода, можно использовать его водный раствор с концентрацией от 5 до 40 мас.%, предпочтительно от 10 до 30 мас.%.
Водная композиция согласно настоящему изобретению имеет содержание Fe++ в диапазоне от 0,5 до 10 ммоль/л, предпочтительно от 1 до 5 ммоль/л.
Кроме того, при использовании пероксида водорода он присутствует в конечной водной композиции в концентрации в диапазоне от 0,5 до 10 мас.%, предпочтительно от 1 до 5 мас.%.
Если окислителем является MHSO5, в этом случае также используют его водный раствор, предпочтительно от 5 до 20 мас.%.
Значительным преимуществом способа согласно данному изобретению является тот факт, что он эффективен также при относительно низких температурах, то есть от 25 до 60°С.
Авторы также отмечают, что способ согласно данному изобретению позволяет восстановить исходные значения проницаемости, как будет показано в экспериментальной части.
Эффективность способа по данному изобретению сначала была исследована в условиях периодической работы, чтобы оценить время, необходимое для снижения вязкости полимерных растворов или, в случае амидов, для полного растворения полисахарида.
В экспериментальной части описаны испытания, проведенные в соответствии со способом согласно данному изобретению, и сравнительные испытания, проведенные в присутствии других окислительных систем.
В частности, были оценены следующие окислители: H2O2, KHSO5, (NH4)2S2O8, NaClO, tBuOOH и Na2BO3.
Были использованы следующие катализаторы: FeSO4, Co(OAc)2, Cu(ОАс)2 или их комплексы с азотсодержащими лигандами (ЭДТК, фенантролин, пиридин-2-карбоновая кислота, пиразин-2-карбоновая кислота, 2,6-пиридиндикарбоновая кислота, 2,3-пиразиндикарбоновая кислота), выбранными за их способность модифицировать окислительно-восстановительный потенциал металла и за их высокую стабильность в окислительных условиях.
Было показано, что из всех различных рассмотренных систем (см. экспериментальную часть) эффективными являются только системы согласно данному изобретению.
Затем оценивали влияние различных растворов солей (KCl 3%, CaCl2 25%, CaBr2 45%, НСООК 20%) на поведение выбранных систем. Это исследование показало, что окислительная система на основе пероксида водорода эффективна также и в присутствии растворов солей.
Для изменения активности системы на основе пероксида водорода были проведены исследования при изменении концентрации катализатора и температуры. Оказалось, что время разложения полимеров можно изменять таким способом в соответствии с предъявляемыми требованиями. Это, несомненно, является другим значительным преимуществом данного способа.
Характеристики продуктов, образующихся при окислении, получены методами ультрафильтрации и гель-проникающей хроматографии; обнаружено полное исчезновение полимеров и образование фрагментов с низкой молекулярной массой, соответствующей 1-5 звеньев глюкозы.
Следующие примеры приведены для лучшего понимания данного изобретения.
Примеры
В таблице 1 приведены данные, относящиеся к разложению ксантановой смолы в присутствии различных окислительных систем, возможно, в присутствии катализаторов (испытания 1-24). Данные, приведенные в таблице, показывают более высокую эффективность систем согласно данному изобретению.
В таблицах 2 (испытания 25-29), 3 (испытания 30-36), 4 (испытания 37-41) и 5 (испытания 42-46) соответственно приведены данные по испытаниям на разложение склероглюкана, сукцинглюкана и двух различных крахмалов в присутствии систем согласно данному изобретению. В этих таблицах также приведены различные сравнительные испытания.
В таблице 6 приведено влияние концентрации катализатора на разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота.
В таблице 7 приведено влияние температуры на скорость разложения в присутствии системы согласно данному изобретению.
В таблице 8 описаны испытания, которые показывают влияние раствора соли на время разложения в присутствии системы H2O2/FeSO4/PyCOOH.
Наконец, испытания 60-62 относятся к испытаниям по удалению фильтрационного осадка.
Сравнительный пример 1. Разложение ксантановой смолы пероксидом водорода
Испытание по разложению проводили с использованием раствора N-VISR (поставляемого Baroid), полученного растворением 1,2 г полисахарида в 200 мл деионизированной воды с помощью мешалки Сильверсона.
Начальное значение вязкости, измеренное с помощью ротационного вискозиметра FANN 35 SA с конфигурацией ротора R1B1 при скорости вращения 5,1 с-1 составляло 200.
К полученному раствору добавили 1,2 г пероксида водорода при концентрации 30 мас.% (10,6 ммоль) и затем эту смесь выдерживали в статических условиях при температуре 35°С.
Скорость разложения оценивали путем измерения времени, необходимого для достижения вязкости ниже 10 мПа·с.
Через 24 часа работы в описанных выше условиях вязкость оставалась практически неизменной.
Сравнительный пример 2. Разложение ксантановой смолы пероксидом водорода, катализируемое FeSO4
Испытание проводили в условиях, описанных для примера 1 с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.%(10.6 ммоль). а в качестве катализатора - 0,16 г (0,58 ммоль) FeSO4*7H2O (мольное соотношение окислитель/катализатор = 18).
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 4 часа.
Сравнительный пример 3. Разложение ксантановой смолы пероксидом водорода, катализируемое комплексом Fe/ЭДТК
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.%(10,6 ммоль), а в качестве катализатора - комплекса, полученного путем добавления 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,51 г (1,74 ммоль) ЭДТК (этилендиаминтетрауксусной кислоты).
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, равно 1 часу.
Сравнительный пример 4. Разложение ксантановой смолы пероксидом водорода, катализируемое комплексом Fe/ 1,10-фенантролин
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,34 г (1,74 ммоль) 1,10-фенантролина.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 4 часа.
Сравнительный пример 5. Разложение ксантановой смолы пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 3 минуты.
Сравнительный пример 6. Разложение ксантановой смолы пероксидом водорода, катализируемое комплексом Fe/пиразинкарбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,22 г (1,74 ммоль) пиразинкарбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 10 минут.
Сравнительный пример 7. Разложение ксантановой смолы пероксидом водорода, катализируемое комплексом Fe/2,6-пиридиндикарбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,29 г (1,74 ммоль) 2,6-пиридиндикарбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 10 минут.
Сравнительный пример 8. Разложение ксантановой смолы пероксидом водорода, катализируемое комплексом Fe/2,3-пиразиндикарбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,29 г (1,74 ммоль) 2,3-пиразиндикарбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 3 минуты.
Сравнительный пример 9. Разложение ксантановой смолы моноперсульфатом калия
Испытания проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль) в отсутствии катализатора.
При работе в статических условиях при 35°С через 24 часа вязкость оставалась практически неизменной.
Сравнительный пример 10. Разложение ксантановой смолы моноперсульфатом калия, катализируемое FeSO4.
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - 0,16 г (0,58 ммоль) FeSO4*7H2O.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 16 часов.
Сравнительный пример 11. Разложение ксантановой смолы моноперсульфатом калия, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время. необходимое для снижения вязкости до 10 мПа·с, составляет 8 минут.
Сравнительный пример 12. Разложение ксантановой смолы моноперсульфатом калия, катализируемое комплексом Fe/пиразинкарбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47мас.% (9,9 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиразинкарбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 4 часа.
Сравнительный пример 13. Разложение ксантановой смолы пероксидисульфатом аммония
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 2,3 г пероксидисульфата аммония [(NH4)2S2O8] в отсутствие катализатора.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 12 часов.
Сравнительный пример 14. Разложение ксантановой смолы пероксидисульфатом аммония, катализируемое FeSO4
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 2,3 г пероксидисульфата аммония [(NH4)2S2O8] (10,1 ммоль), а в качестве катализатора - 0,16 г (0,58 ммоль) FeSO4*7H2O.
Было показано, что при работе в статических условиях при 35°С время. необходимое для снижения вязкости до 10 мПа·с, составляет 2 часа.
Сравнительный пример 15. Разложение ксантановой смолы пероксидисульфатом аммония, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 2,3 г пероксидисульфата аммония [(NH4)2S2O8] (10,1 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа с, составляет 4 часа.
Сравнительный пример 16. Разложение ксантановой смолы пероксидисульфатом аммония, катализируемое комплексом Fe/пиразинкарбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 2,3 г пероксидисульфата аммония [(NH4)2S2O8] (10,1 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,22 г (1,74 ммоль) пиразинкарбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа с, составляет 2 часа.
Сравнительный пример 17. Разложение ксантановой смолы пероксидом водорода, катализируемое Со(СН3СОО)2
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - 0,15 г (0,60 ммоль) Со(СН3СОО)2*4H2O.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 10 часов.
Сравнительный пример 18. Разложение ксантановой смолы пероксидом водорода, катализируемое комплексом Со/пиридин-2-карбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,15 г (0,60 ммоль) Со(СН3СОО)2*4H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С вязкость оставалась практически неизменной через 24 часа.
Сравнительный пример 19. Разложение ксантановой смолы моноперсульфатом аммония, катализируемое Со(СН3СОО)2
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - 0,15 г (0,60 ммоль) Со(СН3СОО)2*4H2O. Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 3 минуты.
Сравнительный пример 20. Разложение ксантановой смолы моноперсульфатом калия, катализируемое комплексом Со/пиридин-2-карбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - 0,15 г (0,60 ммоль) Со(СН3СОО)2*4H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 7 часов.
Сравнительный пример 21. Разложение ксантановой смолы пероксидом водорода, катализируемое Сu(СН3СОО)2
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - 0,12 г (0,60 ммоль) Сu(СН3СОО)2*H2O.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 30 минут.
Сравнительный пример 22. Разложение ксантановой смолы пероксидом водорода, катализируемое комплексом Cu/пиридин-2-карбоновая кислота
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,12 г (0,60 ммоль) Cu(СН3СОО)2*H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
При работе в статических условиях при 35°С через 24 часа вязкость оставалась практически неизменной.
Сравнительный пример 23. Разложение ксантановой смолы моноперсульфатом аммония, катализируемое Cu(СН3СОО)2
Испытание проводили в условиях, описанных в примере 1, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - 0,12 г (0,60 ммоль) Cu(СН3СОО)2*H2O.
При работе в статических условиях при 35°С через 24 часа вязкость оставалась практически неизменной.
Сравнительный пример 24. Разложение ксантановой смолы моноперсульфатом калия, катализируемое комплексом Cu/пиридин-2-карбоновая кислота
Испытание проводили в условиях, описанных для примера 1, с использованием в качестве окислителя 3,2 г моноперсульфата калия (КНSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - 0,12 г (0,60 ммоль) Cu(СН3СОО)2*H2O и 0,22 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
При работе в статических условиях при 35°С через 24 часа вязкость оставалась практически неизменной.
Сравнительный пример 25. Разложение склероглюкана пероксидом водорода
Испытание на разложение проводили с использованием раствора BIOVIS (поставляемого SKW Trostberg), полученного растворением 1,2 г полисахарида в 200 мл деионизированной воды посредством мешалки Сильверсона.
Было показано, что исходное значение вязкости, измеренное с использованием ротационного вискозиметра FANN 35 SA с конфигурацией ротора R1B1 при 5,5 с-1, было равно 200.
К полученному раствору добавляли 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль) и затем эту смесь поддерживали в статических условиях при температуре 35°С.
Скорость разложения оценивали путем измерения времени. необходимого для достижения вязкости, более низкой чем 10 мПа·с.
При работе в описанных выше условиях через 24 часа вязкость оставалась практически неизменной.
Пример 26. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили при условиях, описанных в примере 25, с использованием в качестве окислителя 1,2 пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты (мольное соотношение агент-окислитель/катализатор = 18).
Было показано, что при работе в статических условиях при 35°С время. необходимое для снижения вязкости до 10 мПа·с, составляет 20 минут.
Сравнительный пример 27. Разложение склероглюкана моноперсульфатом калия
Испытание проводили при условиях, описанных в примере 25, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль) без катализатора.
При работе в статических условиях при 35°С через 24 часа вязкость оставалась практически неизменной.
Сравнительный пример 28. Разложение склероглюкана моноперсульфатом калия, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили при условиях, описанных в примере 25, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время. необходимое для снижения вязкости до 10 мПа·с, составляет 1 час.
Сравнительный пример 29. Разложение склероглюкана моноперсульфатом калия, катализируемое Со(СН3СОО)2
Испытание проводили при условиях, описанных в примере 25, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - 0,15 г (0,60 ммоль) Со(СН3СОО)2*4H2O.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 15 минут.
Сравнительный пример 30. Разложение сукцинглюкана пероксидом водорода
Испытание на разложение проводили с использованием раствора FLOPACR (поставляемого Halliburton), полученного растворением 6,0 г полисахарида в 200 мл деионизированной воды с помощью мешалки Сильверсона.
Было показано, что исходное значение вязкости, измеренное с помощью ротационного вискозиметра FANN 35 SA с конфигурацией ротора R1B1 при 5,5 с-1 равно 450.
К полученному раствору добавляли 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль) и эту смесь поддерживали в статических условиях при температуре 35°С.
Скорость разложения оценивали путем измерения времени, необходимого для достижения вязкости ниже 10 мПа·с. При работе в описанных выше условиях через 24 часа вязкость оставалась практически неизменной.
Пример 31. Разложение сукцинглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили при условиях, описанных в примере 30, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа с, составляет 10 минут.
Сравнительный пример 32. Разложение сукцинглюкана моноперсульфатом калия
Испытание проводили при условиях, описанных в примере 30, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль) без катализатора.
При работе в статических условиях при 35°С через 24 часа вязкость оставалась практически неизменной.
Сравнительный пример 33. Разложение сукцинглюкана моноперсульфатом калия, катализируемое комплексом Ре/пиридин-2-карбоновая кислота
Испытание проводили при условиях, описанных в примере 30, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 2 часа.
Сравнительный пример 34. Разложение сукцинглюкана моноперсульфатом калия, катализируемое Со(СН3СОО)2
Испытание проводили при условиях, описанных в примере 30, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - 0,15 г (0,60 ммоль) Со(СН3СОО)2*4H2O.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с составляет 10 минут.
Сравнительный пример 35. Разложение сукцинглюкана пероксидисульфатом аммония
Испытание проводили при условиях, описанных в примере 1, с использованием в качестве окислителя 2,3 г пероксидисульфата аммония [(NH4)2S2O8] (10,1 ммоль) в отсутствие катализатора.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 14 часов.
Сравнительный пример 36. Разложение сукцинглюкана пероксидисульфатом аммония, катализируемое FeSO4
Испытание проводили при условиях, описанных в примере 1, с использованием в качестве окислителя 2,3 г пероксидисульфата аммония [(NH4)2S2O8] (10,1 ммоль), а в качестве катализатора - 0,16 г (0,58 ммоль) FeSO4*7H2O.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, равно 1 часу.
Сравнительный пример 37. Разложение крахмала пероксидом водорода
Испытание на разложение проводили с использованием суспензии FLOTROLR (поставляемой MI), полученной добавлением 2 г полисахарида к 200 мл деионизированной воды.
К полученной смеси добавляли 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль) и затем смесь поддерживали при слабом перемешивании при температуре 35°С.
Скорость разложения оценивали, измеряя время, необходимое для полного растворения полисахарида.
При работе в описанных выше условиях суспензия оставалась практически неизменной после 24 часов.
Пример 38. Разложение крахмала пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили при условиях, описанных в примере 37, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в описанных выше условиях при 35°С время, необходимое для полного растворения полисахарида, составляет 50 минут.
Сравнительный пример 39. Разложение крахмала моноперсульфатом калия
Испытание проводили при условиях, описанных в примере 37, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль) без катализатора.
При работе в описанных выше условиях суспензия оставалась практически неизменной через 24 часа.
Сравнительный пример 40. Разложение крахмала моноперсульфатом калия, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили при условиях, описанных в примере 37, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты. Было показано, что при работе в описанных выше условиях при 35°С время, необходимое для полного растворения полисахарида, составило 3 часа.
Сравнительный пример 41. Разложение крахмала моноперсульфатом калия, катализируемое Со(СН3СОО)2
Испытание проводили при условиях, описанных в примере 37, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - 0,15 г (0,60 ммоль) Со(СН3СОО)2*4H2O.
Было показано, что при работе в описанных выше условиях при 35°С время, необходимое для полного растворения полисахарида, составляло 25 минут.
Сравнительный пример 42. Разложение крахмала пероксидом водорода
Испытание на разложение проводили с использованием суспензии DUALFLOR (поставляемой MI), полученной добавлением 2 г полисахарида к 200 мл деионизированной воды.
К полученной смеси добавили 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль) и затем ее поддерживали при слабом перемешивании при температуре 35°С.
Скорость разложения оценивали путем измерения времени, необходимого для полного растворения полисахарида.
При работе в описанных выше условиях суспензия через 24 часа оставалась практически неизменной.
Пример 43. Разложение крахмала пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили при условиях, описанных в примере 42, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в описанных выше условиях при 35°С время, необходимое для полного растворения полисахарида, составляло 40 минут.
Сравнительный пример 44. Разложение крахмала моноперсульфатом калия
Испытание проводили при условиях, описанных в примере 42, с использованием в качестве агента-окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль) без катализатора.
При работе в описанных выше условиях суспензия оставалась практически неизменной через 24 часа.
Сравнительный пример 45. Разложение крахмала моноперсульфатом калия, катализируемое комплексом Fe/пиридин-2-карбоновая кислота
Испытание проводили при условиях, описанных в примере 42, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - комплекса, полученного добавлением 0,16 г мг (0,58 ммоль) FeSO4*7H2O и 0,21 г (1,74 ммоль) пиридин-2-карбоновой кислоты.
Было показано, что при работе в описанных выше условиях при 35°С время, необходимое для полного растворения полисахарида, составляет 1 час.
Сравнительный пример 46. Разложение крахмала моноперсульфатом калия, катализируемое Со(СН3СОО)2
Испытание проводили при условиях, описанных в примере 42, с использованием в качестве окислителя 3,2 г моноперсульфата калия (KHSO5) с концентрацией 47 мас.% (9,9 ммоль), а в качестве катализатора - 0,15 г (0,60 ммоль) Со(СН3СОО)2*4H2O.
Было показано, что при работе в описанных выше условиях при 35°С время, необходимое для полного растворения полисахарида, составляет 20 минут.
Пример 47. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота: влияние концентрации катализатора
Испытание проводили при условиях, описанных в примере 26, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.%(10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 64 мг (0,23 ммоль) FeSO4*7H2O и 84 мг (0,69 ммоль) пиридин-2-карбоновой кислоты (мольное соотношение окислитель/катализатор = 46).
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с составляет 30 минут.
Пример 48. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота, влияние концентрации катализатора
Испытание проводили при условиях, описанных в примере 26, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 32 мг (0,12 ммоль) FeSO4*7H2O и 44 мг (0,36 ммоль) пиридин-2-карбоновой кислоты (мольное соотношение окислитель/катализатор = 88).
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 4 часа.
Пример 49. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота, влияние концентрации катализатора
Испытание проводили при условиях, описанных в примере 26, с использованием в качестве окислителя 1,2 г пероксида водорода с концентрацией 30 мас.% (10,6 ммоль), а в качестве катализатора - комплекса, полученного добавлением 16 мг (0,06 ммоль) FeSO4*7H2O и 22 мг (0,18 ммоль) пиридин-2-карбоновой кислоты (мольное соотношение окислитель/катализатор = 177).
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 18 часов.
Пример 50. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота, влияние температуры
Испытание проводили при условиях, описанных в примере 26.
Было показано, что при работе в статических условиях при 25°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 90 минут.
Пример 51. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота, влияние температуры
Испытание проводили при условиях, описанных в примере 26.
Было показано, что при работе в статических условиях при 50°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 10 минут.
Пример 52. Разложение склероглюкана моноперсульфатом калия, катализируемое Со(СН3СОО)2, влияние температуры
Испытание проводили при условиях, описанных в примере 29.
Было показано, что при работе в статических условиях при 25°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 60 минут.
Пример 53. Разложение склероглюкана моноперсульфатом калия, катализируемое Co(CH3COO)2, влияние температуры
Испытание проводили при условиях, описанных в примере 29.
Было показано, что при работе в статических условиях при 50°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 8 минут.
Пример 54. Разложение крахмала пероксидом водорода, катализируемое комплексом Fе/пиридин-2-карбоновая кислота, влияние температуры
Испытание проводили в условиях, описанных в примере 38.
Было показано, что при работе в статических условиях при 25°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 75 минут.
Пример 55. Разложение крахмала пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота, влияние температуры
Испытание проводили при условиях, описанных в примере 38.
Было показано, что при работе в статических условиях при 50°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 6 минут.
Пример 56. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота, влияние солевого раствора (KCI)
Испытание проводили при условиях, описанных в примере 26, путем растворения полисахарида в 200 мл водного раствора KCl с концентрацией 3 мас.%.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 25 минут.
Пример 57. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота, влияние солевого раствора (CaCl2)
Испытание проводили при условиях, описанных в примере 26, путем растворения полисахарида в 200 мл водного раствора CaCl2 с концентрацией 25 мас.%.
Было показано, что при работе в статических условиях при 35°С время, необходимое для снижения вязкости до 10 мПа·с, составляет 25 минут.
Пример 58. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота, влияние раствора соли (CaBr2)
Испытание проводили при условиях, описанных в примере 26, при растворении полисахарида в 200 мл водного раствора CaBr2 с концентрацией 45 мас.%.
При работе в вышеуказанных условиях суспензия оставалась практически неизменной через 24 часа.
Было подтверждено разложение CaBr2 с образованием Br2.
Пример 59. Разложение склероглюкана пероксидом водорода, катализируемое комплексом Fe/пиридин-2-карбоновая кислота, влияние раствора соли (НСООК)
Испытание проводили при условиях, описанных в примере 26, при растворении полисахарида в 200 мл водного раствора формиата калия с концентрацией 20 мас.%.
При работе в вышеуказанных условиях суспензия оставалась практически неизменной через 24 часа.
Было подтверждено разложение формиата калия с образованием CO2.
Пример 60. Удаление фильтрационного осадка
Исходную проницаемость керамического фильтра (диаметр: 63,5 мм (2,5 дюйма), толщина: 6,4 мм (0,25 дюйма), пористость: 5 микрон) определяли с использованием динамического фильтр-пресса, предназначенного для работы в условиях высокой температуры и высокого давления (НТНР), измеряя время, необходимое для прохождения 200 мл водного раствора KCl с концентрацией 3% при давлении 0,7 МПа (7 бар) при 40°С.
Затем ячейку заполнили жидкостью, имеющей следующий состав:
Образование фильтрационного осадка было получено при поддержании ячейки под давлением 2,1 МПа (21 бар) при перемешивании (600 об/мин) в течение 30 минут. После промывки водой было проведено удаление фильтрационного осадка путем добавления в ячейку разлагающего раствора, имеющего следующий состав:
Раствор выдерживали при статических условиях в течение 4 часов при 40°С.
После промывки водой определяли остаточную проницаемость путем измерения времени, необходимого для прохождения 200 мл водного раствора КСl с концентрацией 3% под давлением 0,7 МПа (7 бар) при 40°С.
Были получены следующие результаты:
Исходная проницаемость: 20 с/200 мл
Конечная проницаемость: 20 с/200 мл
Восстановление проницаемости: 100%
Пример 61. Удаление фильтрационного осадка
Испытание проводили при условиях, описанных в примере 60, но используя для формирования фильтрационного осадка следующую жидкость:
После обработки разлагающим раствором были получены следующие результаты:
Пример 62. Удаление фильтрационного осадка
Испытание проводили при условиях, описанных в примере 60, но для формирования фильтрационного осадка использовали следующую жидкость:
После обработки разлагающим раствором были получены следующие результаты:
Сокращения:
ЭДТК(этилендиаминтетрауксусная кислота)
Phen(1,10-фенантролин)
Ру(СООН)(пиридин-2-карбоновая кислота)
PyrCOOH(пиразин-карбоновая кислота)
Ру(СООН)2 (пиридин-2,6-дикарбоновая кислота)
Pyr(СООН)2 (пиразин-2,3-дикарбоновая кислота)
название | год | авторы | номер документа |
---|---|---|---|
МЕТАЛЛ-ЛИГАНДСОДЕРЖАЩИЕ ОТБЕЛИВАЮЩИЕ КОМПОЗИЦИИ | 1999 |
|
RU2234528C2 |
СПОСОБ АКТИВИРОВАНИЯ ТИТАНСОДЕРЖАЩЕГО СИЛИКАЛИТА, ТИТАНСОДЕРЖАЩИЙ СИЛИКАЛИТНЫЙ КАТАЛИЗАТОР И СПОСОБ ОКИСЛЕНИЯ ОРГАНИЧЕСКОГО СУБСТРАТА | 1999 |
|
RU2159675C1 |
СПОСОБ ОКИСЛЕНИЯ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ ДО ГИДРОКСИАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ | 1998 |
|
RU2185368C2 |
СПОСОБ ПОЛУЧЕНИЯ ЦИКЛОГЕКСАНОЛА | 2009 |
|
RU2420506C1 |
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОКСИДОВ КАТАЛИТИЧЕСКИМ ОКИСЛЕНИЕМ ТИОЭФИРОВ | 2008 |
|
RU2374225C1 |
Способ получения N-(фосфонометил)-глицина | 2016 |
|
RU2618629C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОПИЛЕНОКСИДА | 2010 |
|
RU2528385C2 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОВОЛОКНИСТОГО ПОЛИСАХАРИДА | 2006 |
|
RU2404194C2 |
КАТАЛИЗАТОРЫ СУЛЬФООКИСЛЕНИЯ И СПОСОБЫ И СИСТЕМЫ ИХ ПРИМЕНЕНИЯ | 2008 |
|
RU2472841C2 |
КАТАЛИЗАТОР И ЕГО ПРИМЕНЕНИЕ ДЛЯ СИНТЕЗА ПЕРОКСИДА ВОДОРОДА | 2002 |
|
RU2268858C2 |
Изобретение относится к способу удаления фильтрационных осадков, образовавшихся в нефтяных скважинах в ходе бурения, путем обработки указанных фильтрационных осадков водными растворами конкретных окислительных систем, эффективных также при низких температурах. Способ перевода в раствор полимерного материала, осажденного на пористой среде, который включает приведение указанного полимерного материала в контакт с водной композицией, включающей (а) катализатор, выбранный из: (a1) комплекса, имеющего общую формулу (I) Fe++(L)nYs, где L представляет собой лиганд, выбранный из соединений, имеющих общую формулу (II), где Х=СН, N, (а2) растворимой в воде соли кобальта (2+), предпочтительно ацетата кобальта, (b) окислитель, выбранный из: (b1) пероксида водорода, (b2) MHSO5, где М представляет собой щелочной металл, предпочтительно калий; с тем ограничением, что катализатор (a1) можно использовать только в присутствии окислителя (b1), а катализатор (а2) можно использовать только в присутствии окислителя (b2).
Технический результат: заявленный способ обеспечивает возможность перевода в раствор полимерного материала при умеренно низких температурах и давлениях в обедненных горизонтальных скважинах. 12 з.п. ф-лы, 8 табл.
1. Способ перевода в раствор полимерного материала, осажденного на пористой среде, который включает приведение указанного полимерного материала в контакт с водной композицией, при этом указанная водная композиция включает
(а) катализатор, выбранный из
(a1) комплекса, имеющего общую формулу (I)
где n представляет собой целое число от 1 до 3,
Y независимо представляет собой группу анионной природы, связанную с Fe++ в ионную пару в качестве аниона или ковалентной связью "σ"-типа; "s" выражает число групп Y, достаточное для нейтрализации формального окислительного заряда Fe++, и равно 2, если все группы Y являются одновалентными;
a L является лигандом, выбранным из соединений, имеющих общую формулу (II)
где Х=СН, N;
R1 и R2 одинаковые или различные выбраны из радикалов -Н, -СООН и С1-С5-алкил, предпочтительно из Н и СООН;
(а2) растворимой в воде соли кобальта (2+);
(b) окислитель, выбранный из
(b1) пероксида водорода;
(b2) MHSO5, где М представляет собой щелочной металл;
с тем ограничением, что катализатор (a1) можно использовать только в присутствии окислителя (b1), а катализатор (а2) можно использовать только в присутствии окислителя (b2).
2. Способ по п.1, в котором лиганд L представляет собой пиридин-2-карбоновую кислоту.
3. Способ по п.1, в котором растворимая в воде соль кобальта (2+) представляет собой ацетат кобальта.
4. Способ по п.1, в котором в (b2) М=К.
5. Способ по п.1, в котором пероксид водорода используют в виде водного раствора, имеющего содержание Н2О2 в диапазоне от 5 мас.% до 40 мас.%.
6. Способ по п.5, в котором пероксид водорода используют в виде водного раствора, имеющего содержание H2O2 в диапазоне от 10 мас.% до 30 мас.%.
7. Способ по п.1, в котором водная композиция имеет концентрацию Fe++ в диапазоне от 0,5 до 10 ммоль/л.
8. Способ по п.7, в котором водная композиция имеет концентрацию Fe++в диапазоне от 1 до 5 ммоль/л.
9. Способ по п.1, в котором водная композиция имеет концентрацию пероксида водорода в диапазоне от 0,5 до 10 мас.%.
10. Способ по п.9, в котором водная композиция имеет концентрацию пероксида водорода в диапазоне от 1 до 5 мас.%.
11. Способ по п.1, в котором комплекс, имеющий общую формулу (I), формируют «in situ» путем добавления компонентов, то есть лиганда L и соли железа (II).
12. Способ по п.11, в котором мольное соотношение между лигандом и Fe++ составляет от 1/1 до 30/1.
13. Способ по п.12, в котором мольное соотношение между лигандом и Fe++ составляет от 1/1 до 10/1.
US 4609475 А, 02.09.1986 | |||
Устройство для преобразования двоичного безизбыточного кода в двоичный код постоянного веса | 1975 |
|
SU559418A1 |
Карбонизационная колонна | 1977 |
|
SU672740A1 |
US 6131661 А, 17.10.2000 | |||
Химическая энциклопедия, том 1 | |||
- М.: Научное издательство "Большая Российская Энциклопедия", 1998, с.780. |
Авторы
Даты
2011-01-20—Публикация
2006-07-28—Подача