ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2011 года по МПК C22C21/08 

Описание патента на изобретение RU2410458C1

Предлагаемое изобретение относится к области металлургии и может быть использовано при производстве деформированных полуфабрикатов из термически неупрочняемых сплавов на основе алюминия, применяемых в качестве конструкционного и проводникового материала преимущественно в авиакосмической и атомной технике.

Известен деформируемый термически неупрочняемый сплав на основе алюминия следующего химического состава, мас.%:

Магний 0,5-1,8 Алюминий Остальное

(см. Промышленные алюминиевые сплавы. Справ, изд. / Алиева С.Г., Альтман М.Б., Амбарцумян С.М. и др. 2-е изд., перераб. и доп. - М.: Металлургия, 1984, с.44).

Однако существующий сплав имеет низкие прочностные свойства.

Известен деформируемый термически неупрочняемый сплав на основе алюминия следующего химического состава, мас.%:

Магний 1,8-2,8 Марганец 0,2-0,6 Алюминий Остальное

(см. Промышленные алюминиевые сплавы. Справ, изд. / Алиева С.Г., Альтман М.Б., Амбарцумян С.М. и др. 2-е изд., перераб. и доп. - М.: Металлургия, 1984, с.44), прототип.

Недостатком известного сплава является низкая прочность и низкая электропроводность и, как следствие, увеличенный вес и соответственно пониженные характеристики весовой отдачи приборов и аппаратов.

Предлагается деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, скандий, цирконий, церий, железо и кремний при следующем соотношении компонентов, мас.%:

Магний 1,8-2,4 Скандий 0,2-0,4 Цирконий 0,1-0,2 Церий 0,0001-0,005 Железо 0,01-0,15 Кремний 0,01-0,1 Алюминий Остальное,

при этом величина отношения содержания железа к содержанию кремния должна быть не меньше единицы.

Предлагаемый сплав отличается от известного тем, что он дополнительно содержит скандий, цирконий, церий, железо и кремний и компоненты взяты в следующем соотношении, мас.%:

Магний 1,8-2,4 Скандий 0,2-0,4 Цирконий 0,1-0,2 Церий 0,0001-0,005 Железо 0,01-0,15 Кремний 0,01-0,1 Алюминий Остальное,

при этом величина отношения содержания железа к содержанию кремния должна быть не меньше единицы.

Технический результат - повышение прочности и электропроводности сплава, что позволит уменьшить вес изготавливаемых конструкций и соответственно повысить характеристики весовой отдачи приборов и аппаратов.

При данном содержании и соотношении компонентов в предлагаемом сплаве при распаде твердого раствора, зафиксированного при кристаллизации слитка, происходит образование вторичных мелкодисперсных интерметаллидов, оказывающих непосредственное упрочняющее воздействие и обедняющих твердый раствор, повышая тем самым электропроводность матрицы. Это позволяет повысить прочность и электропроводность сплава, сохранив его высокую коррозионную стойкость и хорошую свариваемость, и, как следствие, уменьшить вес изготавливаемых конструкций, повысив тем самым характеристики весовой отдачи приборов и аппаратов, что особенно важно для авиакосмической и атомной техники.

Пример

Получили предлагаемый сплав из шихты, состоящей из алюминия А99, магния МГ95, двойных лигатур алюминий-скандий, алюминий-цирконий, алюминий-церий, алюминий-железо и силумина. Сплав готовили в электрической плавильной печи и методом полунепрерывного литья отливали круглые слитки диаметром 315 мм. Химический состав сплава приведен в таблице 1.

Слитки гомогенизировали, резали на мерные заготовки, механически обрабатывали, после чего при 400°С прессовали на горизонтальном гидравлическом прессе на пруток диаметром 110 мм. Пруток прокатывали при 390°С на катаную заготовку диаметром 8 мм, которую отжигали при 390°С, после чего подвергали холодному волочению до диаметра 2 мм с пятью промежуточными отжигами. Полученную таким образом проволоку диаметром 2 мм отжигали при 250°С. Горячепрессованный пруток диаметром 110 мм и отожженную проволоку диаметром 2 мм испытывали при комнатной температуре с определением предела прочности σв и удельной электропроводности γ. Также проводили испытания сплава-прототипа, химический состав которого приведен в таблице 1. Результаты испытаний представлены в таблице 2.

Таблица 1 Сплав Химический состав, мас.% Магний Марганец Скандий Цирконий Церий Железо Кремний Fe/Si Алюминий Предлагаемый 2,08 - 0,32 0,12 0,0005 0,03 0,02 1,5 Остальное Прототип 2,3 0,4 - - - - - - Остальное Примечание: Fe/Si - отношение содержания железа к содержанию кремния.

Таблица 2 Сплав Предел прочности, σв, МПа Удельная электропроводность, γ, МСм/м Горячепрессованный пруток Отожженная проволока Горячепрессованный пруток Отожженная проволока Предлагаемый 320 243 25,0 25,3 Прототип 210 180 20,8 21,0

Таким образом, предлагаемый сплав имеет предел прочности в 1,2-1,5 раза выше, а электропроводность в 1,15-1,25 раза выше, чем известный сплав-прототип. Это позволит на 10-30% снизить вес конструкций и соответственно повысить характеристики весовой отдачи приборов и аппаратов, что принципиально важно для авиакосмической и атомной техники. Кроме того, применение предлагаемого сплава в виде проволочной заготовки для последующего волочения позволит повысить производительность процесса получения из нее тонкого провода за счет уменьшения числа обрывов при волочении. Применение предлагаемого сплава в виде сварочной проволоки при сварке плавлением заготовок из деформируемых термически неупрочняемых малолегированных сплавов на основе системы алюминий-магний позволит повысить прочность и надежность сварных соединений. Сварные и несварные конструкции из предлагаемого сплава могут применяться для работы в различных агрессивных средах, таких как морская вода, нефть, минеральные масла, компоненты топлива двигателей летательных аппаратов, минеральные удобрения, фтор.

Похожие патенты RU2410458C1

название год авторы номер документа
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2008
  • Овсянников Борис Владимирович
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Чертовиков Владимир Михайлович
RU2387725C2
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Конкевич Валентин Юрьевич
  • Ильенок Андрей Алексеевич
  • Сухомлин Виктор Степанович
RU2082807C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2022
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Иванова Анна Олеговна
  • Никитина Маргарита Александровна
RU2800435C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Елагин В.И.
  • Захаров В.В.
  • Филатов Ю.А.
  • Торопова Л.С.
  • Доброжинская Р.И.
  • Андреев Г.Н.
  • Золоторевский Ю.С.
  • Чижиков В.В.
RU2081934C1
Деформируемый термически неупрочняемый сплав на основе алюминия 2016
  • Захаров Валерий Владимирович
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
  • Бочвар Сергей Георгиевич
  • Доброжинская Руслана Ивановна
RU2639903C2
Деформируемый сплав на основе алюминия 2016
  • Силис Валентина Эгоновна
  • Силис Мария Ильинична
  • Лапин Пётр Георгиевич
  • Никитина Маргарита Александровна
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
  • Снегирёва Лариса Анатольевна
  • Захаров Валерий Владимирович
  • Чугункова Галина Михайловна
RU2621086C1
Деформируемый термически неупрочняемый сплав на основе алюминия 2016
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
RU2623932C1
Деформируемый сплав на основе алюминия 2016
  • Силис Валентина Эгоновна
  • Силис Мария Ильинична
  • Лапин Пётр Георгиевич
  • Никитина Маргарита Александровна
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
  • Снегирёва Лариса Анатольевна
  • Захаров Валерий Владимирович
  • Чугункова Галина Михайловна
RU2754792C1
КОНСТРУКЦИОННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2015
  • Филатов Юрий Аркадьевич
  • Захаров Валерий Владимирович
  • Панасюгина Людмила Ивановна
  • Байдин Николай Григорьевич
  • Лапин Петр Георгиевич
  • Доброжинская Руслана Ивановна
  • Звонков Александр Анатольевич
  • Молочев Валерий Петрович
  • Овсянников Борис Владимирович
  • Хамнагдаева Евгения Александровна
RU2599590C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2013
  • Задерей Александр Геннадьевич
  • Ковалев Геннадий Дмитриевич
  • Филатов Юрий Аркадьевич
  • Захаров Валерий Владимирович
  • Байдин Николай Григорьевич
  • Дегтярь Владимир Григорьевич
  • Чернов Сергей Сергеевич
  • Звонков Александр Анатольевич
  • Махов Сергей Владимирович
  • Доброжинская Руслана Ивановна
  • Овсянников Борис Владимирович
  • Семовских Станислав Валерьевич
RU2513492C1

Реферат патента 2011 года ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к области металлургии и может быть использовано при производстве деформированных полуфабрикатов из термически неупрочняемых свариваемых коррозионно-стойких сплавов на основе алюминия, применяемых в качестве конструкционного и проводникового материала преимущественно в авиакосмической и атомной технике. Сплав на основе алюминия содержит следующие компоненты, мас.%: магний 1,8-2,4, скандий 0,2-0,4, цирконий 0,1-0,2, церий 0,0001-0,005, железо 0,01-0,15, кремний 0,01-0,1, алюминий - остальное, при этом величина содержания железа к содержанию кремния должна быть не меньше единицы. Получается сплав, обладающий повышенной прочностью и электропроводностью, что позволяет уменьшить вес изготавливаемых конструкций. 2 табл.

Формула изобретения RU 2 410 458 C1

Деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, отличающийся тем, что он дополнительно содержит скандий, цирконий, церий, железо и кремний при следующем соотношении компонентов, мас.%:
Магний 1,8-2,4 Скандий 0,2-0,4 Цирконий 0,1-0,2 Церий 0,0001-0,005 Железо 0,01-0,15 Кремний 0,01-0,1 Алюминий Остальное,


величина отношения содержания железа к содержанию кремния в котором не меньше единицы.

Документы, цитированные в отчете о поиске Патент 2011 года RU2410458C1

RU 94041234 A1, 10.09.1996
КОНСТРУКЦИОННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2003
  • Филатов Ю.А.
  • Давыдов В.Г.
  • Елагин В.И.
  • Захаров В.В.
  • Швечков Е.И.
  • Панасюгина Л.И.
  • Доброжинская Р.И.
RU2233345C1
US 2007297936 A1, 27.12.2007
WO 2005045081 A1, 19.05.2005
US 6258318 B1, 10.07.2001.

RU 2 410 458 C1

Авторы

Филатов Юрий Аркадьевич

Захаров Валерий Владимирович

Панасюгина Людмила Ивановна

Даты

2011-01-27Публикация

2009-10-20Подача