АРМАТУРНЫЙ ЭЛЕМЕНТ Российский патент 2011 года по МПК E04C5/00 

Описание патента на изобретение RU2410505C1

Изобретение может быть использовано, в частности, для армирования бетона, в качестве стержня шахтной крепи, сетки для армирования дорожного полотна и пр. и относится арматурному элементу.

Известен композиционный материал для труб с улучшенной теплостойкостью, получаемый посредством введения в него смесей оксидов (оксид алюминия, оксид титана) - патент РФ №2206582, С08J 5/24, опубл. 20.06.2003 г. Недостатком является то, что микронный размер частиц оксидов металлов не позволяет достичь требуемого уровня теплостойкости. К тому же теплостойкость является единственным параметром, который можно улучшить посредством введения смеси оксидов.

Известна также заявка Великобритании №2456484, F01D 5/28, опубл. 22.07.2009. В ней описан армированный стекловолокном материал, который используется для изготовления лопаток ветряных турбин. В качестве полимерного связующего композита используется эпоксидный компаунд с добавлением наноглины. При этом улучшаются барьерные свойства лопаток, обеспечивая хорошую защиту от влаги. Однако эти композиты не обеспечивают должной теплостойкости и огнестойкости.

Наиболее близким аналогом-прототипом является стержень для армирования бетона (патент РФ №2220049, B32B 17/04, E04C 5/07, опубл. 17.12.2003), в котором стержень получают пропиткой стекловолокнистого ровинга полимерным связующим на основе эпоксидной диановой смолы, содержащим изометилтетрагидрофталевый ангидрид (ИЗТГФА) в качестве отвердителя и триэтаноламин в качестве ускорителя отверждения. Однако данное связующее не обладает высокими барьерными свойствами и достаточными физико-механическими характеристиками, в частности, имеет низкий кислородный индекс (Ки) - меньше 20, низкую температуру стеклования - 120°С градусов, что не позволяет производить изделия с высокой химической стойкостью и огнетермоустойчивостью.

Техническим результатом данного изобретения является повышение химической стойкости, огнестойкости, теплостойкости, а также прочности на изгиб арматурного элемента. Параметрами, определяющими огнестойкость, является кислородный индекс, а теплостойкость - температура стеклования.

Технический результат достигается тем, что в арматурном элементе, содержащем волокнистый наполнитель, пропитанный полимерным связующим, в качестве волокнистого наполнителя использован базальтовый или стеклянный ровинг, а в качестве полимерного связующего - полиуретановая или эпоксидная смола с добавлением органической наноглины, модифицированной солью четвертичного аммония.

Органическая наноглина представляет собой природный алюмосиликат с органическими длинноцепочечными катионами (см. Ю.А.Михайлина. «Конструкционные полимерные композиционные материалы», Изд-во НОТ - Научные основы и технологии, Санкт-Петербург, 2008, с.586-587).

Арматурный элемент изготавливают известным методом пултрузии (см. «Справочник по композиционным материалам», т.2, Москва: Машиностроение, 1988 г. стр.239) путем протягивания волокнистого наполнителя, например, базальтового или стеклянного ровинга, через ванну с органической термореактивной смолой (например, полиуретановой или эпоксидной). Избыток смолы удаляется путем протягивания через фильеру с последующим отверждением полученного профиля в термопечах.

Термореактивную смолу готовят путем смешивания компонентов (в частности, эпоксидной смолы и изометилтетрагидрофталевого ангидрида), причем в один из компонентов посредством известной технологии - ультразвукового диспергирования - (Воюцкий С.С. «Курс коллоидной химии», изд. Химия, Москва, 1975 г. ст.251) вводится модификатор, например органическая наноглина, модифицированная солью четвертичного аммония. Наночастицы имеют чешуйчатую структуру размером от 100 до 1000 нм и толщиной 1 нм.

Примеры состава заявляемого арматурного элемента приведены в таблице 1.

Таблица 1 Состав Содержание компонентов мас.% Прочность на изгиб, МПа Химическая стойкость Кислородный индекс, % Темпера тура стеклования, °С 1. Базальтовый ровинг 60-70 1150 Высокая 50 145 Эпоксидная смола 10-20 Изометилтетра гидрофталевый ангидрид 10-20 Cloisite 10A* 1-5 Базальтовый ровинг 60-70 2. Полиуретановая смола 30-40 1300 Высокая 50 200 Cloisite 15A* 1-5 Стеклянный ровинг 60-70 Эпоксидная смола 10-20 3. Изотетрагидро фталевый ангидрид 10-20 1150 Средняя 50 145 Cloisite 20А* 1-5 Стеклянный ровинг 60-70 4. Полиуретановая смола 30-40 1200 Средняя 50 200 Cloisite 30В* 1-5 * Торговая марка наноглины фирмы «Southern Clay» (США).

Для определения конкурентных преимуществ композитного армирующего элемента проведем сравнение с армирующим элементом компании Shoeck (таблица 2).

Таблица 2 Наименование Прочность на изгиб, МПа Химическая стойкость Кислородный индекс, % Температура стеклования, °С Композитный армирующий элемент фирмы Shoeck 1000 Средняя 30 120 Композитный армирующий элемент (на основе эпоксидной смолы) 1150 Высокая 50 145

Из таблицы 2 видно, что увеличение прочности на изгиб составляет 11,5%, также увеличена химическая стойкость, а также такие параметры, как теплостойкость и огнестойкость. Все вышеперечисленное позволяет существенно расширить область применения арматурного элемента.

Проведенные испытания показали, что арматурные элементы, выполненные по приведенной выше технологии, значительно превосходят используемые в настоящее время для тех же целей арматурные элементы по химической стойкости, огнетеплостойкости, включая повышение температуры стеклования, кислородного индекса и механической прочности.

Похожие патенты RU2410505C1

название год авторы номер документа
КОМПОЗИЦИЯ ДЛЯ АРМИРОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ 2012
  • Шабалин Семен Игоревич
  • Шахов Сергей Владимирович
  • Степанова Валентина Федоровна
RU2493337C1
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ 2009
  • Николаев Валерий Николаевич
  • Николаев Виктор Валерьевич
RU2404201C2
СТЕРЖЕНЬ ДЛЯ АРМИРОВАНИЯ БЕТОНА 2001
  • Николаев В.Н.
RU2220049C2
НЕГОРЮЧИЙ КОМПОЗИТНЫЙ МАТЕРИАЛ И СВЯЗУЮЩЕЕ ДЛЯ ЕГО ПОЛУЧЕНИЯ 2014
  • Николаев Валерий Николаевич
RU2598675C2
ВОЛОКНИСТЫЕ ИЗДЕЛИЯ С ПОКРЫТИЕМ ИЗ ВОДНЫХ ПОЛИМЕРНЫХ ДИСПЕРСИЙ 2018
  • Клаусманн, Амон-Элиас
  • Ролле, Ян-Валентин
  • Хенкель, Ульрике
  • Хеес, Михаэль
RU2803465C2
АРМАТУРА КОМПОЗИТНАЯ 2011
  • Кукин Антон Сергеевич
RU2482248C2
СТЕРЖЕНЬ ДЛЯ АРМИРОВАНИЯ БЕТОНА 2005
  • Хозин Вадим Григорьевич
  • Абдрахманова Ляйля Абдулловна
  • Старовойтова Ирина Анатольевна
RU2286315C1
Способ получения полимерных композиционных материалов 2016
  • Красновский Александр Николаевич
  • Кузнецов Андрей Геннадьевич
  • Егоров Сергей Александрович
  • Кищук Петр Сергеевич
RU2637227C1
КОМПОЗИТНОЕ АРМИРУЮЩЕЕ ИЗДЕЛИЕ 2011
  • Зубков Вячеслав Дмитриевич
  • Сарксян Вагаршак Борисович
  • Данилов Игорь Венедиктович
  • Ломакин Олег Геннадьевич
  • Максимов Дмитрий Андреевич
  • Бешлык Вячеслав Эдуардович
  • Фролов Григорий Витальевич
RU2461588C1
КОМПОЗИТНАЯ СТЕКЛОПЛАСТИКОВАЯ АРМАТУРА (ВАРИАНТЫ) 2012
  • Гетунов Александр Николаевич
  • Петров Геннадий Гурьевич
  • Харьковский Сергей Николаевич
RU2520542C1

Реферат патента 2011 года АРМАТУРНЫЙ ЭЛЕМЕНТ

Изобретение может быть использовано, в частности, для армирования бетона, в качестве стержня шахтной крепи, сетки для армирования дорожного полотна и пр., и относится к арматурному элементу. Техническим результатом данного изобретения является повышение химической стойкости, огнетеплостойкости, включая повышение температуры стеклования, кислородного индекса и механической прочности арматурного элемента. Он содержит базальтовый или стеклянный ровинг, пропитанный полиуретановой или эпоксидной смолой, с добавлением органической наноглины, модифицированной солью четвертичного аммония. 2 табл.

Формула изобретения RU 2 410 505 C1

Арматурный элемент, содержащий волокнистый наполнитель, пропитанный полимерным связующим, отличающийся тем, что в качестве волокнистого наполнителя использован базальтовый или стеклянный ровинг, а в качестве полимерного связующего использована полиуретановая или эпоксидная смола с добавлением органической наноглины, модифицированной солью четвертичного аммония.

Документы, цитированные в отчете о поиске Патент 2011 года RU2410505C1

Линейка для перевода масштабов 1947
  • Киреев Б.П.
SU82245A1
Способ изготовления стержня для армирования бетона 1989
  • Авраменко Сония Хабибуловна
  • Андрейченко Владимир Леонидович
  • Дроздова Валентина Ивановна
  • Евгеньев Игорь Евгеньевич
  • Карпанова Валерия Евгеньевна
  • Коканов Иннокентий Иванович
  • Кондратенко Александр Алексеевич
  • Семченко Виталий Антонович
  • Ткачук Сергей Федосеевич
SU1735532A1
СТЕРЖЕНЬ ДЛЯ АРМИРОВАНИЯ БЕТОНА 2001
  • Николаев В.Н.
RU2220049C2

RU 2 410 505 C1

Авторы

Николаев Валерий Николаевич

Николаев Виктор Валерьевич

Даты

2011-01-27Публикация

2009-10-08Подача