СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ РАЗЛОЖЕНИЯ ОЗОНА И МАТЕРИАЛ Российский патент 2011 года по МПК B01D53/66 B01J23/34 B01J23/72 B01J20/30 

Описание патента на изобретение RU2411984C2

Изобретение относится к области неорганической химии и может быть использовано для получения материалов, используемых в газоочистке, в частности, для удаления озона и других примесей из газовых потоков.

Известны многочисленные материалы для разложения озона и способы их получения, основанные на смешивании различных соединений марганца и меди с разными типами связующих веществ (см., например, RU 2077946, 1997, RU 2077947, 1997, RU 2102144, 1998, RU 2130803, 1999, RU 2134157, 1999, RU 2167713, 2001).

Подбор конкретных исходных веществ, используемых для получения материалов, и их количественные соотношения в шихте, как правило, связаны с решением задач, касающихся механической прочности, термостойкости и сорбционно-каталитической активности получаемых продуктов.

Наиболее близким аналогом является способ получения материала для разложения озона, который включает смешивание диоксида марганца, оксида меди, высокоглиноземистого цемента и бентонитовой глины, формование гранул, выдержку на воздухе, гидротермальную обработку при 80-100°С, сушку, прокаливание при 300-400°С. Известным способом получен материал, содержащий (мас.%): диоксид марганца 30-40, оксид меди 25-30, глина 7-20, цемент-талюм - остальное (RU 2169041, 2000).

Однако полученный материал обладает недостаточной степенью разложения озона в слое.

Задачей настоящего изобретения является разработка способа получения, обеспечивающего получение материала с повышенной каталитической активностью в реакции разложения озона при работе в слое материала.

Поставленная задача решается описываемым способом получения материала для разложения озона, включающим перемешивание марганец- и медьсодержащих соединений с высокоглиноземистым цементом и бентонитовой глиной, формование гранул, выдержку на воздухе, гидротермальную обработку, сушку, прокаливание, согласно которому на перемешивание с высокоглиноземистым цементом и бентонитовой глиной подают измельченные до размера 50-150 мкм твердые частицы основного карбоната марганца и основного карбоната меди при следующем соотношении компонентов, мас.%: основной карбонат марганца 13-25, основной карбонат меди 27-50, бентонитовая глина 1,5-6,5, высокоглиноземистый цемент - остальное, гидротермальную обработку осуществляют при 70-80°С, а прокаливание при 410-420°С до обеспечения образования в целевом продукте рентгеноаморфной мелкокристаллической фазы Mn3O4, характеризующейся размером кристаллитов не более 5 нм.

Предпочтительно перемешивание компонентов проводят в присутствии соединений аммония.

Предпочтительно перед прокаливанием материал пропитывают уксусной кислотой.

Поставленная задача решается также материалом для разложения озона, состоящим из оксидов марганца и меди, высокоглиноземистого цемента и бентонитовой глины, при этом материал содержит оксиды марганца в виде мелкокристаллической рентгеноаморфной фазы Mn3O4 при содержании компонентов (мас.%):

оксиды марганца - 30-50

оксид меди - 10-20

бентонитовая глина - 1,5-6,5

высокоглиноземистый цемент - остальное

и материал получен способом, охарактеризованным выше.

Следует отметить, что условия осуществления способа, включая выбор исходных компонентов и их соотношение в шихте, позволяют получить материал, содержащий оксиды марганца в виде мелкокристаллической рентгеноаморфной фазы Mn3O4, характеризующейся размером кристаллитов не более 5 нм, что в свою очередь обеспечивает повышенную каталитическую активность материала в слое при разложении озона.

Ниже приведены примеры осуществления заявленного способа и характеристики полученного материала.

Предложенный материал в общем случае получают следующим образом. Берут измельченные до размеров частиц 50-150 мкм 0,18-0,30 кг основного карбоната марганца, 0,33-0,67 кг основного карбоната меди, 0,34-0,70 кг высокоглиноземистого цемента и 0,018-0,078 кг бентонитовой глины, тщательно перемешивают и получают гранулы диаметром 1-2 мм и длиной 2-7 мм. После подсушки на воздухе при комнатной температуре в течение 10-25 ч гранулы подвергают гидротермальной обработке при температуре 70-80°С в течение 3-4 ч, сушат при температуре 110-120°С в течение 4-6 ч и прокаливают при температуре 410-420°С в течение времени, обеспечивающего получение рентгеноаморфной фазы Mn3O4. Состав полученного катализатора (мас.%): Mn3O4 30-50; CuO 10-20; бентонитовая глина 1,5-6,5; высокоглиноземистый цемент - остальное. Активность катализатора в реакции разложении озона составила 94,0-100%.

Полученный катализатор назван нами гопталюм типа ГТ-ТИМИС.

Пример 1. Берут измельченные до размеров частиц 50-150 мкм 0,18 кг основного карбоната марганца, 0,333 кг основного карбоната меди, 0,70 кг высокоглиноземистого цемента и 0,018 кг бентонитовой глины, тщательно перемешивают и получают гранулы диаметром 1,5 мм и длиной 3-5 мм. После подсушки на воздухе при комнатной температуре в течение 25 ч гранулы подвергают гидротермальной обработке при температуре 75°С в течение 3 ч, сушат при температуре 110°С в течение 6 ч и прокаливают при температуре 415°С в течение 5 ч. Состав полученного катализатора (мас.%): Mn3O4 30, CuO 10, бентонитовая глина 1,5, высокоглиноземистый цемент - остальное. Активность полученного катализатора составила 100%.

Пример 2. Приготовление катализатора, как в примере 1, за исключением количества основного карбоната марганца, основного карбоната меди и высокоглинистого цемента, которые составили 0,30, 0,667 и 0,34 кг соответственно. Кроме того, полученную смесь компонентов увлажняют раствором гидроксида аммония. Состав полученного катализатора (мас.%): Mn3O4 50, CuO 20, бентонитовая глина 1,5, высокоглиноземистый цемент - остальное. Активность полученного катализатора составила 100%.

Пример 3. Приготовление катализатора, как в примере 1, за исключением количества основного карбоната марганца, основного карбоната меди, бентонитовой глины и высокоглинистого цемента, которые составили 0,24, 0,50, 0,03 и 0,51 кг соответственно. При этом перед прокаливанием гранулы пропитывают раствором уксусной кислоты. Состав полученного катализатора (мас.%): Mn3O4 40, CuO 15, бентонитовая глина 2,5, высокоглиноземистый цемент - остальное. Активность полученного катализатора составила 100%.

Пример 4. Приготовление катализатора, как в примере 1, за исключением количества основного карбоната марганца, основного карбоната меди, бентонитовой глины и высокоглинистого цемента, которые составили 0,30, 0,50, 0,78 и 0,34 кг соответственно. Состав полученного катализатора (мас.%): Mn3O4 50, CuO 15, бентонитовая глина 6,5, высокоглиноземистый цемент - остальное. Активность полученного катализатора составила 94,0%.

За меру активности катализаторов принимали степень очистки от озона α, рассчитываемую по формуле:

где с0 - входная концентрация озона;

с - выходная концентрация озона.

Измерения проводили в проточной установке, объемная скорость потока 110 л/ч, входная концентрация 0,5-1,0 об.%.

Результаты исследования влияния состава на активность полученного катализатора приведены в таблице. Оксиды марганца обозначены Mn3O4, бентонитовая глина - БГ, высокоглиноземистый цемент - ВЦ.

Катализатор Состав, мас.% Высота слоя катализатора, см Активность, % Mn3O4 CuO БГ талюм Пример 1 30 10 1,5 58,5 2,0 Полное разложение Пример 2 30 15 1,5 53,5 2,0 Пример 3 50 20 1,5 28,5 2,0 40 15 2,5 42,5 2,0 30 15 3,5 51,5 2,0 96,1 40 20 4,5 35,5 2,0 89,8 3,5 99,2 40 10 5,5 5,5 3,5 97,0 30 10 6,5 53,5 2,0 79,8 Пример 4 50 15 6,5 28,5 3,5 94,0 40 12,5 7,5 40,0 2,0 71,4 3,5 90,3 37 12 9 42,0 2,0 64,3 40 12 12 36,0 3,5 81,5 Известный - - - - 2,0 75,0 3,5 93,5

Как следует из данных, приведенных в таблице, наибольшая активность наблюдается для катализатора, дополнительно содержащего 1,5-6,5 мас.% бентонитовой глины. Таким образом, предложенный катализатор превосходит известный в активности в разложении озона.

Похожие патенты RU2411984C2

название год авторы номер документа
МАТЕРИАЛ С КАТАЛИТИЧЕСКОЙ АКТИВНОСТЬЮ ДЛЯ РАЗЛОЖЕНИЯ ОЗОНА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Ткаченко Сергей Николаевич
  • Довганюк Владимир Федорович
  • Голосман Евгений Зиновьевич
  • Ткаченко Илья Сергеевич
  • Туркова Татьяна Васильевна
  • Залозная Лариса Анатольевна
  • Егорова Галина Викторовна
  • Лунин Валерий Васильевич
RU2411992C2
СОРБЦИОННЫЙ МАТЕРИАЛ С КАТАЛИТИЧЕСКОЙ АКТИВНОСТЬЮ ДЛЯ УДАЛЕНИЯ ОЗОНА ИЗ ЖИДКИХ И ГАЗОВЫХ СРЕД И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2009
  • Ткаченко Сергей Николаевич
  • Залозная Лариса Анатольевна
  • Ткаченко Илья Сергеевич
  • Егорова Галина Викторовна
  • Лунин Валерий Васильевич
  • Голосман Евгений Зиновьевич
  • Трошина Вера Александровна
RU2411991C2
КАТАЛИЗАТОР ДЛЯ РАЗЛОЖЕНИЯ ОЗОНА 1995
  • Ткаченко С.Н.
  • Демидюк В.И.
  • Попович М.П.
  • Мартынов И.В.
  • Егорова Г.В.
  • Лунин В.В.
  • Голосман Е.З.
RU2077946C1
Каталитический блочный материал для разложения озона на основе кордиеритовой керамики, способ очистки воздуха от озона с его использованием 2023
  • Грабченко Мария Владимировна
  • Черных Мария Владимировна
  • Савельева Анна Сергеевна
  • Мамонтов Григорий Владимирович
RU2811231C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ВРЕДНЫХ ПРИМЕСЕЙ 2000
  • Васильев Н.П.
  • Киреев С.Г.
  • Мухин В.М.
  • Романчук Э.В.
  • Смирнов В.Ф.
  • Чебыкин В.В.
RU2167713C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА 2000
  • Васильев Н.П.
  • Киреев С.Г.
  • Мухин В.М.
  • Романчук Э.В.
  • Смирнов В.Ф.
  • Чебыкин В.В.
RU2169041C1
Катализатор для разложения озона 1990
  • Ткаченко Сергей Николаевич
  • Демидюк Владимир Иванович
  • Попович Мирон Петрович
  • Киреева Лилия Андреевна
  • Смирнова Надежда Николаевна
  • Егорова Галина Викторовна
  • Лунин Валерий Васильевич
  • Голосман Евгений Зиновьевич
SU1768274A1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ УДАЛЕНИЯ ВРЕДНЫХ ПРИМЕСЕЙ 1998
  • Мулина Т.В.
  • Любушкин В.А.
  • Чумаченко В.А.
RU2134157C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ РАЗЛОЖЕНИЯ ВРЕДНЫХ ПРИМЕСЕЙ 1999
  • Васильев Н.П.
  • Киреев С.Г.
  • Мухин В.М.
  • Романчук Э.В.
  • Смирнов В.Ф.
  • Чебыкин В.В.
  • Шевченко А.О.
RU2156659C1
Катализатор для глубокого окисления летучих органических соединений и способ его получения 2020
  • Сакаева Наиля Самильевна
  • Балина Снежана Валерьевна
  • Чистяченко Юлия Сергеевна
  • Федотов Кирилл Юрьевич
  • Ястребова Галина Михайловна
RU2735919C1

Реферат патента 2011 года СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА ДЛЯ РАЗЛОЖЕНИЯ ОЗОНА И МАТЕРИАЛ

Изобретение относится в области неорганической химии. Предложен способ получения материала для разложения озона, включающий перемешивание марганец- и медьсодержащих соединений с высокоглиноземистым цементом и бентонитовой глиной, формование гранул, выдержку на воздухе, гидротермальную обработку, сушку, прокаливание, согласно которому на перемешивание с высокоглиноземистым цементом и бентонитовой глиной подают измельченные до размера 50-150 мкм твердые частицы основного карбоната марганца и основного карбоната меди при следующем соотношении компонентов мас.%: основной карбонат марганца 13-25, основной карбонат меди 27-50, бентонитовая глина 1,5-6,5, высокоглиноземистый цемент - остальное, гидротермальную обработку осуществляют при 70-80°С, а прокаливание при 410-420°С до обеспечения образования в целевом продукте рентгеноаморфной мелкокристаллической фазы Mn3O4, характеризующейся размером кристаллитов не более 5 нм. В предпочтительном варианте в способе возможно введение соединений аммония и/или уксусной кислоты. Описан также материал, полученный заявленным способом. Изобретение позволяет получить материал с повышенной каталитической активностью при работе в слое. 2 н. и 2 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 411 984 C2

1. Способ получения материала для разложения озона, включающий перемешивание марганец- и медьсодержащих соединений с высокоглиноземистым цементом и бентонитовой глиной, формование гранул, выдержку на воздухе, гидротермальную обработку, сушку, прокаливание, отличающийся тем, что на перемешивание с высокоглиноземистым цементом и бентонитовой глиной подают измельченные до размера 50-150 мкм твердые частицы основного карбоната марганца и основного карбоната меди при следующем соотношении компонентов мас.%: основной карбонат марганца 13-25, основной карбонат меди 27-50, бентонитовая глина 1,5-6,5, высокоглиноземистый цемент остальное, гидротермальную обработку осуществляют при 70-80°С, а прокаливание при 410-420°С до обеспечения образования в целевом продукте рентгеноаморфной мелкокристаллической фазы Mn3O4, характеризующейся размером кристаллитов не более 5 нм.

2. Способ по п.1, отличающийся тем, что перемешивание компонентов проводят в присутствии соединений аммония.

3. Способ по п.1, отличающийся тем, что перед прокаливанием материал пропитывают уксусной кислотой.

4. Материал для разложения озона, состоящий из оксидов марганца и меди, высокоглиноземистого цемента и бентонитовой глины, отличающийся тем, что он содержит оксиды марганца в виде мелкокристаллической рентгеноаморфной фазы Mn3O4 при содержании компонентов, мас.%:
оксиды марганца 30-50
оксид меди 10-20
бентонитовая глина 1,5-6,5
высокоглиноземистый цемент остальное,
при этом материал получен способом, охарактеризованным в п.1.

Документы, цитированные в отчете о поиске Патент 2011 года RU2411984C2

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА 2000
  • Васильев Н.П.
  • Киреев С.Г.
  • Мухин В.М.
  • Романчук Э.В.
  • Смирнов В.Ф.
  • Чебыкин В.В.
RU2169041C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА 1995
  • Мухин В.М.
  • Киреев С.Г.
  • Васильев Н.П.
  • Шевченко А.О.
  • Никаноров А.Н.
RU2077947C1
КАТАЛИЗАТОР ДЛЯ РАЗЛОЖЕНИЯ ОЗОНА 1995
  • Ткаченко С.Н.
  • Демидюк В.И.
  • Попович М.П.
  • Мартынов И.В.
  • Егорова Г.В.
  • Лунин В.В.
  • Голосман Е.З.
RU2077946C1
US 6506605 A, 14.01.2003
СПОСОБ ОЧИСТКИ ВОЗДУХА 2002
  • Кондратов А.П.
  • Столяров В.П.
  • Скворцов Ю.Ф.
RU2200633C1

RU 2 411 984 C2

Авторы

Ткаченко Илья Сергеевич

Голосман Евгений Зиновьевич

Ткаченко Сергей Николаевич

Киреев Сергей Георгиевич

Лунин Валерий Васильевич

Даты

2011-02-20Публикация

2009-02-26Подача