Изобретение относится к электротехнической и целлюлозно-бумажной промышленности и может быть использовано в производстве электроизоляционных видов бумаги повышенного качества, предназначенных для изоляции различных электротехнических устройств, преимущественно - силовых трансформаторов и кабелей.
Известны способы изготовления электроизоляционных видов бумаги из 100% растительной целлюлозы. Среди них: трансформаторная бумага (ГОСТ 24874-86), а также кабельная - для изоляции силовых кабелей на напряжение до 35 кВ (ГОСТ 23436-83) и на напряжение до 500 кВ (ГОСТ 645-89). Однако существенным недостатком целлюлозных диэлектриков из 100% растительной целлюлозы и бумажно-пропитанной изоляции (БПИ) на их основе являются относительно невысокие электрофизические характеристики, включая нагревостойкость.
В патенте СА №1.279.450. описан способ использования бактериальной целлюлозы в качестве связующего для получения нетканых и бумагоподобных материалов из различных волокон, в том числе из волокон растительного происхождения. Определено оптимальное количество вводимой в массу бактериальной целлюлозы - 20%. Также заявлен способ культивирования бактериальной целлюлозы в динамических условиях. Однако влияние бактериальной целлюлозы на электрофизические свойства электроизоляционных видов бумаги в данном патенте не рассматривалась, как и не производилась электроизоляционная бумага.
В настоящей заявке бактериальную целлюлозу, предлагаемую к использованию в качестве композиционной добавки в основу бумаги из растительной электроизоляционной целлюлозы, получают путем поверхностного культивирования штамма Acetobacter xylinum BKM В 880. Наногель-пленка бактериальной целлюлозы (НГП ЦАХ) получена на питательных средах, содержащих в качестве источника углерода отходы или полуотходы производств, имеющих моносахара, например, гидролизат древесины или щелока целлюлозно-бумажного производства (патент RU №2189394, опубл. 20.09.2002). Способ реализован на модельной установке для производства НГП ЦАХ.
Наиболее близким по технической сущности и техническому результату является способ изготовления электроизоляционной бумаги (SU 1565928, опубл. 23.05.90), включающий роспуск целлюлозы, последующий размол массы, введение химической добавки и отлив бумажного полотна, при этом в качестве химической добавки используют соединение, выбранное из группы, содержащей малеиновый ангидрид, изопропиловый спирт, этиловый спирт и пропионовую кислоту, в количестве 0,001-3% от массы абсолютно сухого волокна. Известная добавка обеспечивает улучшение качества конденсаторной бумаги за счет повышения пробивного напряжения до 700-800 В, при этом значительно интенсифицируется процесс обезвоживания бумажной массы. Однако известный способ не является экологически безопасным и не обеспечивает таких электрофизических характеристик, как нагревостойкость, сорбционная способность и механическая прочность.
Технической задачей и положительным результатом данного способа являются повышение электрической и механической прочности электроизоляционных целлюлозных материалов (на примере кабельной бумаги). Также повышается нагревостойкость пропитанных целлюлозных диэлектриков вследствие замедления процессов разрушения целлюлозного компонента и пропитывающей диэлектрической среды за счет сорбционной очистки электроизоляционной жидкости от продуктов старения, ионогенных примесей и ионов металлов, способствующих развитию деструктивных процессов в изоляции.
Указанная задача и положительный результат достигаются за счет того, что способ получения электроизоляционной бумаги включает роспуск и размол целлюлозы, введение композиционной добавки и отлив бумажного полотна, при этом в композицию бумаги вводят бактериальную целлюлозу (ЦАХ), культивированную штаммом Acetobacter xylinum BKM В-880 в количестве 2-10% от массы абсолютно сухой растительной целлюлозы, бумагу изготавливают трехслойной, а бактериальную целлюлозу вводят в каждый слой. Способ характеризуется тем, что ЦАХ предварительно подвергают роспуску в течение 100-120 минут с последующим размолом: рафинирующий размол 20-30 минут, рубка 1-3 минуты при концентрации массы 0,2%.
Реализация предлагаемого способа получения электроизоляционной бумаги иллюстрируется следующими примерами его осуществления.
Пример 1-4. Подготовку бумажной массы проводят следующим способом: сульфатную небеленую хвойную целлюлозу марки ЭКБ распускают и размалывают до 45°ШР, затем в размолотую массу добавляют подготовленную ЦАХ в количестве 0-10% к массе абсолютно сухого волокна, перемешивают в течение 10-15 минут и осуществляют отлив бумаги. ЦАХ подвергают роспуску в течение 100-120 минут с последующим размолом (рафинирующий размол в течение 20-30 минут и рубка в течение 1-3 минут). Роспуск и размол проводят при концентрации 0,2%. Кабельную бумагу толщиной 120±7 мкм и плотностью 0,78±0,05 г/см3 получают трехслойной, бактериальную целлюлозу вводят в каждый слой. Результаты определения электрофизических характеристик бумаги представлены в таблице 1.
Анализ экспериментальных результатов, представленных в таблице 1, показывает, что введение ЦАХ в состав целлюлозной основы кабельной бумаги (примеры 1-3) способствует повышению ее электрофизических свойств. Так, по мере увеличения процентного содержания ЦАХ в основе из растительной целлюлозы механическая и кратковременная электрическая прочность кабельной бумаги (№1-№3) повышаются по сравнению с кабельной бумагой без добавки ЦАХ (№4).
Введение в композицию бумаги ЦАХ положительно сказывается и на нагревостойкости компонентов пропитанного диэлектрика. После термического старения в течение 120 часов при температуре 140°С кратковременная электрическая прочность (Епр) бумаги (№1-4) практически не меняется. При этом механические показатели (σp) снижаются у всех рассмотренных образцов бумаги, вследствие термоокислительной деструкции макромолекул целлюлозы. Однако при введении в целлюлозную основу ЦАХ (№1-3), даже в минимальном количестве - 2% (№1), значения σp остаются более высокими, чем у кабельной бумаги, не содержащей в своем составе ЦАХ (№4).
Определение коэффициента относительного светопропускания (Кос, %) предварительно состаренного нефтяного масла (содержащего продукты деструкции, примеси и ионы меди) до и после выдержки в контакте с кабельной бумагой №3 и №4 показало, что введение в состав основы из растительной целлюлозы ЦАХ усиливает сорбционную активность электроизоляционного материала. Так, после контакта с бумагой №3 светопропускание масла оказалось несколько выше, чем после контакта с бумагой №4 (табл.1). Погрешность измерения при помощи микроколориметра МКМФ-1 составляла 1%. Следовательно, введение ЦАХ в состав электроизоляционной бумаги способствует замедлению процессов разрушения жидкого диэлектрика за счет более интенсивной сорбционной очистки масла целлюлозным компонентом.
Введение в композицию бумаги ЦАХ (пример 1-5) не вызывает повышения зольности бумаги, которая может ухудшить диэлектрические свойства, и снижает удельную электрическую проводимость водной вытяжки (пример 3-5).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОИЗОЛЯЦИОННОЙ БУМАГИ | 2016 |
|
RU2648640C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ НЕДОСТАЮЩИХ ЧАСТЕЙ ЛИСТОВ БУМАГИ | 2011 |
|
RU2472891C1 |
БУМАГА КАБЕЛЬНАЯ | 2013 |
|
RU2531295C1 |
Способ изготовления электроизоляционной бумаги | 1988 |
|
SU1640259A1 |
Способ изготовления электроизоляционной бумаги | 1985 |
|
SU1286662A1 |
Способ изготовления электроизоляционной бумаги | 1991 |
|
SU1770507A1 |
Способ изготовления электроизоляционного материала | 1980 |
|
SU870552A1 |
СОСТАВ ПИТАТЕЛЬНОЙ СРЕДЫ КУЛЬТИВИРОВАНИЯ ACETOBACTER XYLINUM ДЛЯ ПОЛУЧЕНИЯ БАКТЕРИАЛЬНОЙ ЦЕЛЛЮЛОЗЫ (ВАРИАНТЫ) | 1998 |
|
RU2189394C2 |
Способ изготовления электроизоляционной бумаги | 1987 |
|
SU1565928A1 |
РАНЕВОЕ ПОКРЫТИЕ С ЛЕЧЕБНЫМ ДЕЙСТВИЕМ | 2010 |
|
RU2437681C1 |
Способ касается получения электроизоляционной бумаги, относится к электротехнической и целлюлозно-бумажной промышленности и может быть использован в производстве преимущественно кабельной и трансформаторной бумаги. Способ включает роспуск целлюлозы, размол целлюлозной массы, введение композиционной добавки и отлив бумажного полотна. В качестве композиционной добавки используют бактериальную целлюлозу Acetobacter xylinum (ЦАХ) в количестве 2-10% от массы абсолютно сухого волокна. При этом указанную бактериальную целлюлозу предварительно подвергают роспуску в течение 100-120 минут с последующим размолом. Рафинирующий размол осуществляют в течение 20-30 минут и рубку - в течение 1-3 мин. ЦАХ получают путем поверхностного культивирования штамма Acetobacter xylinum ВКМ В-880. Техническим результатом является повышение электрической и механической прочности электроизоляционной бумаги, а также нагревостойкость компонентов бумажно-пропитанной изоляции. Введение ЦАХ в состав электроизоляционной бумаги способствует замедлению процессов разрушения жидкого диэлектрика за счет более интенсивной сорбционной очистки масла целлюлозным компонентом. 1 з.п. ф-лы, 1 табл.
1. Способ получения электроизоляционной бумаги, включающий роспуск и размол целлюлозы, введение композиционной добавки и отлив бумажного полотна, отличающийся тем, что в композицию бумаги вводят бактериальную целлюлозу, культивированную штаммом Acetobacter xylinum BKM В-880 в количестве 2-10% от массы абсолютно сухой растительной целлюлозы, при этом бумагу изготавливают трехслойной, а бактериальную целлюлозу вводят в каждый слой.
2. Способ по п.1, отличающийся тем, что бактериальную целлюлозу предварительно подвергают роспуску в течение 100-120 мин с последующими рафинирующим размолом в течение 20-30 мин и рубкой 1 -3 мин при концентрации массы 0,2%.
Способ изготовления электроизоляционной бумаги | 1987 |
|
SU1565928A1 |
СОСТАВ ПИТАТЕЛЬНОЙ СРЕДЫ КУЛЬТИВИРОВАНИЯ ACETOBACTER XYLINUM ДЛЯ ПОЛУЧЕНИЯ БАКТЕРИАЛЬНОЙ ЦЕЛЛЮЛОЗЫ (ВАРИАНТЫ) | 1998 |
|
RU2189394C2 |
ВОЛОКНИСТАЯ МАССА ДЛЯ ИЗГОТОВЛЕНИЯЭЛЕКТРОИЗОЛЯЦИОННЫХ видов БУМАГИ ИЛИ КАРТОНАт | 1971 |
|
SU433263A1 |
ИЗДЕЛИЯ, СОДЕРЖАЩИЕ ВОЛОКНА И/ИЛИ ФИБРИДЫ, ВОЛОКНА И ФИБРИДЫ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 2003 |
|
RU2315827C2 |
CA 1279450 C, 29.01.1991 | |||
US 2010032114 A1, 11.02.2010 | |||
JP 2009277653 A, 26.11.2009 | |||
CH 101424060 A, 06.05.2009. |
Авторы
Даты
2011-03-27—Публикация
2010-04-30—Подача