ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ Российский патент 2011 года по МПК C22C38/58 

Описание патента на изобретение RU2421538C1

Изобретение относится к области металлургии стали и может быть использовано в машиностроении, приборостроении, судостроении и для создания высокоэффективной буровой техники.

Известна коррозионно-стойкая немагнитная сталь, содержащая 0,03% углерода, 0,4÷0,6% азота; 23÷25% хрома; 5÷7% марганца, 16÷18% никеля и 4÷5% молибдена (сталь марки 1.4565S, Материалы конференции «High Nitrogen Steels 90», Aahen, 1990, p.155). Основным недостатком этой стали является низкая прочность, плохая свариваемость и высокое содержание дорогих и дефицитных никеля и молибдена.

Наиболее близкой к предлагаемому техническому решению является сталь 07Х21Г7АН5, принятая нами за прототип [см. А.А.Бабаков, М.В.Приданцев «Коррозионно-стойкие стали и сплавы». М.: Металлургия, 1971. с.168, ЧМТУ 393-60, ЦНИИЧМ], содержащая 0,05÷0,10% углерода, до 0,7% кремния, 0,15÷0,25% азота, 20÷22% хрома, 6÷8% марганца, 5÷6% никеля, железо и неизбежные примеси, такие как сера и фосфор. Недостатками прототипа является недостаточный уровень прочностных свойств (σв=700 МПа; σ0,2=400 МПа) для высоконагруженных деталей, а также наличие ферромагнитного δ-феррита в структуре стали, который недопустим для немагнитных изделий, при содержании аустенитообразующих элементов на нижнем пределе марочного состава.

Техническим результатом предлагаемого изобретения является создание высокопрочной немагнитной коррозионно-стойкой стали, обладающей более высокими прочностными характеристиками, коррозионной стойкостью и немагнитностью.

Технический результат достигается тем, что в высокопрочную немагнитную сталь, содержащую углерод, кремний, марганец, хром, никель, азот, железо и неизбежные примеси, дополнительно введены молибден, ванадий, ниобий, бор, кальций и селен при следующем соотношении компонентов, мас.%

углерод 0.03-0.07 ниобий 0.10-0.20 кремний 0.10-0.40 селен 0.010-0.015 марганец 9.0-11.0 азот 0.47-0.52 хром 19.5-20.5 кальций 0,005-0,010 никель 3.5-4.5 сера ≤0.02 бор 0.001-0.005 фосфор ≤0.02 молибден 0.7-1.2 железо остальное ванадий 0.15-0.25

при этом для значений концентрации легирующих элементов выполняются условия:

где [N], [С], [Si], [Mn], [Ni], [Cr], [Mo], [V], [Nb] - концентрация в стали азота, углерода, кремния, марганца, никеля, хрома, молибдена, ванадия и ниобия соответственно, выраженная в мас.%:

б) соотношение содержания углерода к содержанию азота (мас.%) должно быть в пределах - 0,06÷0,14;

в) соотношение содержания (мас.%) должно быть в пределах 37÷41,

при этом в ней формируется развитая субзеренная структура в процессе горячей пластической деформации при температурах 1000÷1100°С с обжатием 50÷80% и последующим охлаждением в воде до комнатной температуры.

Содержание в стали углерода [С]=0,03 и азота [N]=0,47 в минимальных указанных количествах достаточно для обеспечения высокой прочности основного металла. При содержании углерода более 0,07% и азота более 0.52% соответственно трудно получить удовлетворительные показатели пластичности и ударной вязкости из-за образования при тепловых выдержках большого количества карбида хрома типа Cr23C6, и нитридов хрома типа Cr2N. В этом случае трудно получить не имеющий пор металл без использования повышенного давления азота над расплавом из-за ограниченной растворимости азота в металле такого состава. Для предотвращения образования карбидов хрома типа Cr23C6 отношение содержания углерода к содержанию азота не должно превышать 0,14.

Введение в сталь 19,5-20,5% хрома необходимо для обеспечения требуемого уровня коррозионной стойкости и растворимости азота в указанных пределах. При содержании хрома более 20,5% и никеля менее 3,5% - сталь будет иметь пониженную пластичность из-за образования феррита и σ-фазы.

Выполнение условия обеспечивает предотвращение образования σ-фазы в структуре стали, что повышает пластичность стали.

С увеличением содержания никеля более 4,5% - из-за снижения растворимости азота в металле невозможно получить сталь с заданным количеством азота. Получение содержания марганца на уровне 9-11% обеспечивает стабильность аустенита по отношению к γ→α(М) превращению, повышает растворимость азота и способствует раскислению металла. Введение в сталь ванадия и ниобия в количестве 0.15-0.25% и 0,1-0,2% соответственно обеспечивает мелкозернистую структуру за счет нитридов ниобия и повышение прочности (за счет образования мелкодисперсных нитридов ванадия). При меньших концентрациях ванадия и ниобия положительный эффект от его введения незначителен. Увеличение содержания ванадия и ниобия более 0.25% и 0,20% приводит к снижению прочности металла из-за обеднения твердого раствора азотом в результате образования термически устойчивых нитридов ниобия, диссоциирующих в аустените при температурах выше 1150°С, и снижению ударной вязкости из-за увеличения количества нитридов ванадия. Дополнительное введение в сталь молибдена от 0,7% до 1,2% препятствует образованию в металле ферромагнитной фазы (δ-феррита). Добавки кальция и селена в количествах соответственно 0,005-0,010 и 0,010-0,015%, улучшая морфологию неметаллических включений, повышают пластичность металла и его технологичность, особенно обрабатываемость резанием. Если кальция и селена в металле меньше соответственно 0,005 и 0,010% - значительного эффекта от их введения не обеспечивается, при увеличении их содержания более соответственно 0,010 и 0,015% дальнейшего улучшения свойств не достигается. Введение в состав стали бора 0,001-0,005% улучшает пластичность металла при горячем нагреве за счет уменьшения крупного зерна в слябах. При содержании бора более 0,005% сталь разрушается вдоль границ зерен при температурах выше 1100°С из-за образования легкоплавкой эвтектики бора.

Выполнение условия:

обеспечивает получение неферромагнитной стали (µ<1,01 Гс/Э). При уменьшении значений отношения менее 0,66 не удается получить аустенитную структуру без ферромагнитных фаз (мартенсита и феррита). При значении отношения более 0,76 в стали не достигается необходимый уровень растворимости азота.

Аустенит с развитой субзеренной структурой в предлагаемой стали, обеспечивающей высокие прочностные свойства, можно получить в результате горячей пластической деформации (ковки или прокатки) при температурах 1000-1100°С с обжатием 50÷80% и последующим охлаждением в воде до комнатной температуры. Пластическая деформация при температурах ниже 1000°С снижает пластичность и ударную вязкость стали и затрудняет процесс получения качественных изделий из-за высокого сопротивления металла пластическому деформированию. Наилучшее сочетание прочностных и пластических свойств стали достигается при обжатии 50÷80%. Обжатия менее 50% не обеспечивают требуемый уровень прочностных свойств, а обжатия более 80% приводят к значительному снижению пластичности. Высокая скорость охлаждения в воде от температуры горячей деформации предотвращает образование в объеме металла нитридных фаз, снижающих пластичность стали, и ферромагнитной фазы - мартенсита.

Сталь выплавляли в открытой индукционной печи емкостью 50 кг. При температуре 1100°С металл ковали на прутки 13×13 мм. Структуру металла определяли на рентгеновском дифрактометре. Механические испытания проводили на машине Инстрон-1185.

У стали после горячей деформации (в процессе ковки) достигается высокое упрочнение (σв=1080-1130 МПа; σ0,2=915-980 МПа) при сохранении повышенной пластичности (δ=30,2-34,9%; ψ=51-53,8%) и ударной вязкости (KCU=1,10-1,31 МДж/м2). Результаты химического анализа предлагаемой стали и прототипа, а также результаты испытаний приведены в таблицах 1 и 2.

Таблица 2 Механические свойства и магнитная проницаемость стали. Сталь № плавки Обработка σв МПа σ0,2 МПа δ, % ψ, % KCU, МДж/м2 µ, Гс/Э Прототип Закалка от 1100°С в воду 692 395 31 63 2,9 1,009 Предлагаемая 1 Ковка при 1100°С, охлаждение в воде 1080 915 31,9 53,8 1,31 1,009 2 Ковка при 1070°С, охлаждение в воде 1100 941 31,8 52,4 1,20 1,008 3 Ковка при 1000°С, охлаждение в воде 1130 980 30,2 51,0 1,10 1,007

Похожие патенты RU2421538C1

название год авторы номер документа
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2008
  • Блинов Виктор Михайлович
  • Банных Игорь Олегович
  • Блинов Евгений Викторович
  • Зверева Тамара Николаевна
  • Бецофен Сергей Яковлевич
  • Ригина Людмила Георгиевна
RU2367710C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ 2002
  • Банных О.А.
  • Блинов В.М.
  • Костина М.В.
  • Лякишев Н.П.
  • Ригина Л.Г.
  • Горынин И.В.
  • Рыбин В.В.
  • Малышевский В.А.
  • Калинин Г.Ю.
  • Ямпольский В.Д.
  • Буцкий Е.В.
  • Римкевич В.С.
  • Сидорина Т.Н.
RU2205889C1
ВЫСОКОПРОЧНАЯ И ВЫСОКОВЯЗКАЯ НЕМАГНИТНАЯ СВАРИВАЕМАЯ СТАЛЬ 2005
  • Блинов Виктор Михайлович
  • Банных Олег Александрович
  • Ильин Александр Анатольевич
  • Соколов Олег Георгиевич
  • Костина Мария Владимировна
  • Блинов Евгений Викторович
  • Ригина Людмила Георгиевна
  • Зверева Тамара Николаевна
RU2303648C1
ВЫСОКОПРОЧНАЯ ЛИТЕЙНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2010
  • Банных Олег Александрович
  • Блинов Виктор Михайлович
  • Блинов Евгений Викторович
  • Костина Мария Владимировна
  • Мурадян Саркис Ованесович
  • Ригина Людмила Георгиевна
  • Солнцев Константин Александрович
RU2445397C1
КОМПОЗИЦИОННАЯ СТАЛЬ ДЛЯ ЭЛЕКТРОМАГНИТНОГО ОРУЖИЯ 2008
  • Якушев Олег Степанович
  • Бабиков Анатолий Борисович
  • Таныгин Станислав Вениаминович
  • Кулалаев Юрий Аркадьевич
RU2374354C1
КОРРОЗИОННО-СТОЙКАЯ ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ СТАЛЬ И СПОСОБ ЕЕ ТЕРМОДЕФОРМАЦИОННОЙ ОБРАБОТКИ 2008
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Голуб Юлия Викторовна
  • Гутман Евгений Рафаилович
  • Калинин Григорий Юрьевич
  • Малахов Николай Викторович
  • Мушникова Светлана Юрьевна
  • Фомина Ольга Владимировна
  • Харьков Александр Аркадьевич
  • Цуканов Виктор Владимирович
  • Ямпольский Вадим Давыдович
  • Дурынин Виктор Алексеевич
  • Афанасьев Сергей Юрьевич
  • Баландин Сергей Юрьевич
  • Батов Юрий Матвеевич
  • Немтинов Александр Анатольевич
  • Степанов Александр Александрович
  • Луценко Андрей Николаевич
RU2392348C2
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ ВЫСОКОАЗОТИСТАЯ НЕМАГНИТНАЯ СТАЛЬ 2009
  • Орыщенко Алексей Сергеевич
  • Малышевский Виктор Андреевич
  • Калинин Григорий Юрьевич
  • Мушникова Светлана Юрьевна
  • Харьков Олег Александрович
  • Гутман Евгений Рафаилович
  • Банных Олег Александрович
  • Блинов Виктор Михайлович
  • Зверева Тамара Николаевна
  • Блинов Евгений Викторович
  • Банных Игорь Олегович
RU2425905C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОМПОЗИЦИОННАЯ СТАЛЬ 2008
  • Якушев Олег Степанович
  • Бабиков Анатолий Борисович
  • Кулалаев Юрий Аркадьевич
  • Потапов Виктор Иванович
  • Карев Владислав Александрович
  • Шишулин Анатолий Петрович
  • Чураков Александр Алексеевич
RU2360029C1
ЖАРОПРОЧНАЯ ВЫСОКОПЛАСТИЧНАЯ АУСТЕНИТНАЯ СТАЛЬ 2009
  • Банных Олег Александрович
  • Блинов Виктор Михайлович
  • Банных Игорь Олегович
  • Блинов Евгений Викторович
  • Зверева Тамара Николаевна
  • Ригина Людмила Георгиевна
  • Дуб Владимир Семенович
  • Берман Леонид Исаевич
  • Скоробогатых Владимир Николаевич
  • Тыкочинская Татьяна Васильевна
RU2415197C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2018
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Назаратин Владимир Васильевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2683173C1

Реферат патента 2011 года ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ

Изобретение относится к области металлургии, а именно к составам высокопрочных немагнитных коррозионно-стойких сталей, используемых в машиностроении, приборостроении, судостроении и буровой технике. Сталь содержит углерод, кремний, марганец, хром, никель, азот, молибден, ванадий, ниобий, бор, кальций, селен, железо и в качестве неизбежных примесей серу и фосфор при следующем соотношении компонентов, мас.%: углерод 0,03-0,07, кремний 0,10-0,40, марганец 9,0-11,0, хром 19,5-20,5, никель 3,5-4,5, бор 0,001-0,005, молибден 0,7-1,2, ванадий 0,15-0,25, ниобий 0,10-0,20, селен 0,010-0,015, азот 0,47-0,52, кальций 0,005-0,010, сера ≤0,02, фосфор ≤0,02, железо остальное. Отношение выражения ([Ni]+0,1[Mn]-0.01[Mn]2+18[N]+30[С]) к выражению ([Cr]+1,5[Мо]+0,48[Si]+2,3[V]+1,75[Nb]) составляет 0,66÷0,76, отношение содержания углерода к содержанию азота составляет 0,06÷0,14, а отношение (Cr+2Мо+4V)/(С+N) составляет 37÷41. Сталь имеет развитую субзеренную структуру после горячей пластической деформации при температурах 1000-1100°С с обжатием 50÷80% и последующего охлаждения в воде до комнатной температуры. Сталь обладает высокими прочностными характеристиками, коррозионной стойкостью и немагнитностью. 1 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 421 538 C1

1. Высокопрочная немагнитная коррозионно-стойкая сталь, содержащая углерод, кремний, марганец, хром, никель, азот, железо и в качестве неизбежных примесей серу и фосфор, отличающаяся тем, что она дополнительно содержит молибден, ванадий, ниобий, бор, кальций и селен при следующем соотношении компонентов, мас.%:
углерод 0,03-0,07 кремний 0,10-0,40 марганец 9,0-11,0 хром 19,5-20,5 никель 3,5-4,5 бор 0,001-0,005 молибден 0,7-1,2 ванадий 0,15-0,25 ниобий 0,10-0,20 селен 0,010-0,015 азот 0,47-0,52 кальций 0,005-0,010 сера ≤0,02 фосфор ≤0,02 железо остальное,


при этом для значений концентраций легирующих элементов выполняется условие:
,
где [N], [С], [Si], [Mn], [Ni], [Cr], [Mo], [V], [Nb] - концентрация в стали азота, углерода, кремния, марганца, никеля, хрома, молибдена, ванадия и ниобия соответственно, выраженная в мас.%,
отношение концентрации углерода к содержанию азота составляет 0,06÷0,14, а отношение содержания в мас.% составляет 37÷41.

2. Сталь по п.1, отличающаяся тем, что она имеет развитую субзеренную структуру после горячей пластической деформации при температурах 1000÷1100°С с обжатием 50÷80% и последующего охлаждения в воде до комнатной температуры.

Документы, цитированные в отчете о поиске Патент 2011 года RU2421538C1

ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ 2002
  • Банных О.А.
  • Блинов В.М.
  • Костина М.В.
  • Лякишев Н.П.
  • Ригина Л.Г.
  • Горынин И.В.
  • Рыбин В.В.
  • Малышевский В.А.
  • Калинин Г.Ю.
  • Ямпольский В.Д.
  • Буцкий Е.В.
  • Римкевич В.С.
  • Сидорина Т.Н.
RU2205889C1
ВЫСОКОПРОЧНАЯ И ВЫСОКОВЯЗКАЯ НЕМАГНИТНАЯ СВАРИВАЕМАЯ СТАЛЬ 2005
  • Блинов Виктор Михайлович
  • Банных Олег Александрович
  • Ильин Александр Анатольевич
  • Соколов Олег Георгиевич
  • Костина Мария Владимировна
  • Блинов Евгений Викторович
  • Ригина Людмила Георгиевна
  • Зверева Тамара Николаевна
RU2303648C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОМПОЗИЦИОННАЯ СТАЛЬ 2008
  • Якушев Олег Степанович
  • Бабиков Анатолий Борисович
  • Кулалаев Юрий Аркадьевич
  • Потапов Виктор Иванович
  • Карев Владислав Александрович
  • Шишулин Анатолий Петрович
  • Чураков Александр Алексеевич
RU2360029C1
АУСТЕНИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2000
  • Шлямнев А.П.
  • Сорокина Н.А.
  • Свистунова Т.В.
  • Столяров В.И.
  • Рыбкин А.Н.
  • Чикалов С.Г.
  • Воробьев Н.И.
  • Лившиц Д.А.
  • Белинкий А.Л.
  • Кошелев Ю.Н.
  • Кабанов И.В.
RU2173729C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2008
  • Блинов Виктор Михайлович
  • Банных Игорь Олегович
  • Блинов Евгений Викторович
  • Зверева Тамара Николаевна
  • Бецофен Сергей Яковлевич
  • Ригина Людмила Георгиевна
RU2367710C1
Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
US 2006034724 A, 16.02.2006.

RU 2 421 538 C1

Авторы

Блинов Виктор Михайлович

Банных Игорь Олегович

Блинов Евгений Викторович

Зверева Тамара Николаевна

Ригина Людмила Георгиевна

Орыщенко Алексей Сергеевич

Малышевский Виктор Андреевич

Калинин Григорий Юрьевич

Мушникова Светлана Юрьевна

Даты

2011-06-20Публикация

2009-12-02Подача