ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ ВЫСОКОАЗОТИСТАЯ НЕМАГНИТНАЯ СТАЛЬ Российский патент 2011 года по МПК C22C38/38 

Описание патента на изобретение RU2425905C1

Изобретение относится к области металлургии стали и может быть использовано в машиностроении, приборостроении, судостроении и для создания высокоэффективной буровой техники.

Известна коррозионно-стойкая немагнитная сталь, содержащая менее 0,15% углерода, менее 0,25% азота; 17÷19% хрома; 7,5÷10% марганца, 4÷6% никеля и менее 1% кремния (сталь марки AISI 202, Metals Handbook. Ninth Edition. Volume 13. Corrosion. / Ed. L.J.Korb, D.L.Olson. - USA: ASM International, 1994. - 500 с.). Известна коррозионно-стойкая немагнитная сталь 12Х17Г9Н4 (отечественный аналог стали AISI 202).

Основным недостатком этих сталей является низкая прочность (σв=688-720 МПа; σ0,2=340-370 МПа) и высокое содержание дорогого и дефицитного никеля.

Наиболее близким аналогом к предлагаемому техническому решению является сталь 10Х14Г9Д2СА (см. Хосино Кадзуо, Морита Катаро, японский патент), содержащая 0,06÷0,15% углерода, 0,05÷0,15% азота; 13÷15% хрома; 7÷11% марганца, 1÷4% меди и 0,3÷1% кремния, железо и неизбежные примеси, такие как сера и фосфор. Однако эта сталь обладает недостаточным для высоконагруженных немагнитных деталей уровнем прочностных свойств (σв=790 МПа; σ0,2=360 МПа), недостаточный уровень магнитной проницаемости и коррозионной стойкости.

Задача, на решение которой направлено настоящее изобретение, заключается в создании высокопрочной немагнитной коррозионно-стойкой стали.

Технический результат изобретения заключается в повышении прочностных характеристик, коррозионной стойкости и немагнитности стали.

Технический результат достигается тем, что в высокопрочную немагнитную сталь, содержащую углерод, кремний, марганец, хром, азот, железо и неизбежные примеси дополнительно введены молибден, ванадий и кальций (таблица 1) при следующем соотношении компонентов, мас.%:

углерод 0,03-0,07 ванадий 0,15-0,25 кремний от 0,10 до менее 0,20 азот 0,50-0,65 марганец 6,0-8,0 сера ≤0,020 хром 15,0-17,0 фосфор ≤0,020 молибден 0,5-0,7 кальций 0,005-0,01 железо и неизбежные примеси ост.

при этом для значений концентраций легирующих элементов должны выполняться условия:

а)

где [N], [С], [Si], [Mn], [Cr], [Mo], [V] - концентрация в стали азота, углерода, кремния, марганца, хрома, молибдена и ванадия соответственно, выраженная в массовых процентах.

б) соотношение содержания мас.% должно быть в пределах 28÷35.

Содержание в стали углерода [С]=0,03 и азота [N]=0,50-0,65 достаточно для обеспечения высокой прочности основного металла. При содержании углерода более 0,07% и азота более 0,65% соответственно трудно получить удовлетворительные показатели пластичности и ударной вязкости из-за образования при тепловых выдержках большого количества нитридов хрома типа Cr2N.

Введение в сталь 15-17% хрома необходимо для обеспечения требуемого уровня коррозионной стойкости и растворимости азота в указанных пределах. При содержании хрома более 17% и азота менее 0,50% - сталь будет иметь пониженную пластичность из-за образования феррита и σ-фазы, а при содержании хрома менее 15% сталь будет иметь пониженную коррозионную стойкость.

Выполнение условия обеспечивает предотвращение образования σ-фазы в структуре стали.

Получение содержания марганца на уровне 6-8% обеспечивает стабильность аустенита по отношению к γ→α(М) превращению, повышает растворимость азота и способствует раскислению металла.

Введение в сталь ванадия в количестве более 0,15% обеспечивает мелкозернистую структуру и повышение прочности (за счет образования мелкодисперсных нитридов ванадия). При меньших концентрациях ванадия положительный эффект от его введения незначителен. Увеличение содержания ванадия более 0,25% приводит к снижению прочности металла из-за обеднения твердого раствора азотом в результате образования термически устойчивых нитридов ванадия, диссоциирующих в аустените при температурах выше 1150°С.

При содержании молибдена более 0,7% в металле может образовываться ферромагнитная фаза (δ-феррит). Добавка кальция в количестве 0,005-0,010% улучшает морфологию неметаллических включений, повышает пластичность металла и его технологичность, особенно обрабатываемость резанием. Если кальция в металле меньше 0,005% - значительного эффекта от их введения не обеспечивается, при увеличении его содержания более 0,010% дальнейшего улучшения свойств не достигается.

Выполнение условия:

обеспечивает получение неферромагнитной стали (µ<1,01 Гс/Э). При уменьшении значений отношения менее 0,68 не удается получить аустенитную структуру без ферромагнитных фаз (мартенсита и феррита). При значении отношения более 0,80 в стали не достигается необходимый уровень растворимости азота.

Сталь с высоким содержанием азота (в 1,5-1,7 раза выше равновесной концентрации) выплавляли при использовании повышенного давления азота над расплавом. Слитки подвергаются горячей пластической деформации (ковке или прокатке) при температурах 900-1050°С с обжатием 50÷80%. Сталь характеризуется гомогенной аустенитной структурой, полученной в результате аустенитизации при 1050-1070°С. Температура ниже 1050°С недостаточна для растворения нитридов хрома и ванадия, нагрев выше 1070°С приводит к образованию высокотемпературного δ-феррита.

Сталь выплавляли в специальной индукционной печи емкостью 40 кг при использовании повышенного давления азота над расплавом. При температуре 900-1050°С металл ковали на заготовки, которые затем прокатывали на пластины размером 16×300×600 мм. Аустенитизацию осуществляли при 1050°С с последующей закалкой в воду. Механические испытания проводили на машинах ZWICK/ROELL. Для оценки коррозионной стойкости применяли индекс питтингостойкости, определяемый по формуле: PRE=%Cr+3.3%Mo+16%N.

У стали после аустенитизации достигается высокое упрочнение σв=880-940 МПа; σ0,2=580-606 МПа) при удовлетворительной ударной вязкости (KCV=35,0-42,4 Дж/см2). Результаты химического анализа предлагаемой стали и прототипа, а также результаты испытаний приведены в таблицах 2 и 3.

Как следует из таблиц 2 и 3, сталь предложенного состава (№1-3) обладает более высокими значениями прочностных характеристик (σв, σ0,2), низкой магнитной проницаемостью (µ) и в значительной степени увеличенными показателями коррозионной стойкости (PRE) по сравнению со сталью, принятой нами в качестве прототипа. Таким образом, изделия из стали предложенного состава будут обладать повышенным уровнем эксплуатационных характеристик.

Похожие патенты RU2425905C1

название год авторы номер документа
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2008
  • Блинов Виктор Михайлович
  • Банных Игорь Олегович
  • Блинов Евгений Викторович
  • Зверева Тамара Николаевна
  • Бецофен Сергей Яковлевич
  • Ригина Людмила Георгиевна
RU2367710C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2009
  • Блинов Виктор Михайлович
  • Банных Игорь Олегович
  • Блинов Евгений Викторович
  • Зверева Тамара Николаевна
  • Ригина Людмила Георгиевна
  • Орыщенко Алексей Сергеевич
  • Малышевский Виктор Андреевич
  • Калинин Григорий Юрьевич
  • Мушникова Светлана Юрьевна
RU2421538C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ СТАЛЬ 2010
  • Орыщенко Алексей Сергеевич
  • Малышевский Виктор Андреевич
  • Гутман Евгений Рафаилович
  • Калинин Григорий Юрьевич
  • Малахов Николай Викторович
  • Цуканов Виктор Владимирович
  • Фомина Ольга Владимировна
  • Банных Олег Александрович
  • Блинов Виктор Михайлович
  • Костина Мария Владимировна
  • Кучинский Владимир Георгиевич
  • Сойкин Владимир Федорович
RU2447186C2
ВЫСОКОПРОЧНАЯ ЛИТЕЙНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2010
  • Банных Олег Александрович
  • Блинов Виктор Михайлович
  • Блинов Евгений Викторович
  • Костина Мария Владимировна
  • Мурадян Саркис Ованесович
  • Ригина Людмила Георгиевна
  • Солнцев Константин Александрович
RU2445397C1
ВЫСОКОПРОЧНАЯ И ВЫСОКОВЯЗКАЯ НЕМАГНИТНАЯ СВАРИВАЕМАЯ СТАЛЬ 2005
  • Блинов Виктор Михайлович
  • Банных Олег Александрович
  • Ильин Александр Анатольевич
  • Соколов Олег Георгиевич
  • Костина Мария Владимировна
  • Блинов Евгений Викторович
  • Ригина Людмила Георгиевна
  • Зверева Тамара Николаевна
RU2303648C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОМПОЗИЦИОННАЯ СТАЛЬ 2008
  • Якушев Олег Степанович
  • Бабиков Анатолий Борисович
  • Кулалаев Юрий Аркадьевич
  • Потапов Виктор Иванович
  • Карев Владислав Александрович
  • Шишулин Анатолий Петрович
  • Чураков Александр Алексеевич
RU2360029C1
ВЫСОКОПРОЧНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ ПЕРЕХОДНОГО КЛАССА 2015
  • Банных Олег Александрович
  • Блинов Виктор Михайлович
  • Лукин Евгений Игоревич
  • Глезер Александр Маркович
  • Бецофен Сергей Яковлевич
  • Блинов Евгений Викторович
  • Мушникова Светлана Юрьевна
  • Парменова Ольга Николаевна
RU2576773C1
ЖАРОПРОЧНАЯ ВЫСОКОПЛАСТИЧНАЯ АУСТЕНИТНАЯ СТАЛЬ 2009
  • Банных Олег Александрович
  • Блинов Виктор Михайлович
  • Банных Игорь Олегович
  • Блинов Евгений Викторович
  • Зверева Тамара Николаевна
  • Ригина Людмила Георгиевна
  • Дуб Владимир Семенович
  • Берман Леонид Исаевич
  • Скоробогатых Владимир Николаевич
  • Тыкочинская Татьяна Васильевна
RU2415197C1
КОМПОЗИЦИОННАЯ СТАЛЬ ДЛЯ ЭЛЕКТРОМАГНИТНОГО ОРУЖИЯ 2008
  • Якушев Олег Степанович
  • Бабиков Анатолий Борисович
  • Таныгин Станислав Вениаминович
  • Кулалаев Юрий Аркадьевич
RU2374354C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ 2002
  • Банных О.А.
  • Блинов В.М.
  • Костина М.В.
  • Лякишев Н.П.
  • Ригина Л.Г.
  • Горынин И.В.
  • Рыбин В.В.
  • Малышевский В.А.
  • Калинин Г.Ю.
  • Ямпольский В.Д.
  • Буцкий Е.В.
  • Римкевич В.С.
  • Сидорина Т.Н.
RU2205889C1

Реферат патента 2011 года ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ ВЫСОКОАЗОТИСТАЯ НЕМАГНИТНАЯ СТАЛЬ

Изобретение относится к области металлургии, а именно к составу высокопрочной коррозионно-стойкой высокоазотистой немагнитной стали, используемой в машиностроении, приборостроении, судостроении и для создания высокоэффективной буровой техники. Сталь содержит углерод, кремний, марганец, хром, азот, молибден, ванадий, кальций, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,03-0,07, кремний от 0,1 до менее 0,2, марганец 6,0-8,0, хром 15,0-17,0, молибден 0,5-0,7, ванадий 0,15-0,25, азот 0,50-0,65, кальций 0,005-0,01, железо и неизбежные примеси остальное. В качестве неизбежных примесей она содержит серу ≤0,020 и фосфор ≤0,020. Сталь после аустенизации при 1050-1070°С имеет гомогенную аустенитную структуру, а для ее компонентов выполняются следующие условия: (0,1[Mn]-0,01[Mn]2+18[N]+30[С])/([Cr]+1,5[Mo]+0,48[Si]+2,3[V])=0,68÷0,80 и {Cr+2Мо+4V)/(С+N)=28÷35. Повышаются прочностные характеристики, коррозионная стойкость и немагнитность. 3 табл.

Формула изобретения RU 2 425 905 C1

Сталь высокопрочная коррозионно-стойкая высокоазотистая немагнитная, содержащая углерод, кремний, марганец, хром, азот, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит молибден, ванадий и кальций при следующем соотношении компонентов, мас.%:
углерод 0,03-0,07 кремний от 0,1 до менее 0,2 марганец 6,0-8,0 хром 15,0-17,0 молибден 0,5-0,7 ванадий 0,15-0,25 азот 0,50-0,65 кальций 0,005-0,01 железо и неизбежные примеси, в том числе сера ≤0,020 и фосфор ≤0,020 остальное,


при этом она имеет гомогенную аустенитную структуру после аустенизации при 1050-1070°С, и выполняются следующие условия:
,
где [N], [С], [Si], [Mn], [Cr], [Mo], [V] - концентрация в стали азота, углерода, кремния, марганца, хрома, молибдена и ванадия соответственно, выраженная в мас.%, а соотношение содержаний мас.% находится в пределах 28÷35.

Документы, цитированные в отчете о поиске Патент 2011 года RU2425905C1

GB 2055122 А, 25.02.1981
АУСТЕНИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2000
  • Шлямнев А.П.
  • Сорокина Н.А.
  • Свистунова Т.В.
  • Столяров В.И.
  • Рыбкин А.Н.
  • Чикалов С.Г.
  • Воробьев Н.И.
  • Лившиц Д.А.
  • Белинкий А.Л.
  • Кошелев Ю.Н.
  • Кабанов И.В.
RU2173729C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОМПОЗИЦИОННАЯ СТАЛЬ 2008
  • Якушев Олег Степанович
  • Бабиков Анатолий Борисович
  • Кулалаев Юрий Аркадьевич
  • Потапов Виктор Иванович
  • Карев Владислав Александрович
  • Шишулин Анатолий Петрович
  • Чураков Александр Алексеевич
RU2360029C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СВАРИВАЕМАЯ СТАЛЬ 2002
  • Банных О.А.
  • Блинов В.М.
  • Костина М.В.
  • Лякишев Н.П.
  • Ригина Л.Г.
  • Горынин И.В.
  • Рыбин В.В.
  • Малышевский В.А.
  • Калинин Г.Ю.
  • Ямпольский В.Д.
  • Буцкий Е.В.
  • Римкевич В.С.
  • Сидорина Т.Н.
RU2205889C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2008
  • Блинов Виктор Михайлович
  • Банных Игорь Олегович
  • Блинов Евгений Викторович
  • Зверева Тамара Николаевна
  • Бецофен Сергей Яковлевич
  • Ригина Людмила Георгиевна
RU2367710C1
ВЫСОКОПРОЧНАЯ И ВЫСОКОВЯЗКАЯ НЕМАГНИТНАЯ СВАРИВАЕМАЯ СТАЛЬ 2005
  • Блинов Виктор Михайлович
  • Банных Олег Александрович
  • Ильин Александр Анатольевич
  • Соколов Олег Георгиевич
  • Костина Мария Владимировна
  • Блинов Евгений Викторович
  • Ригина Людмила Георгиевна
  • Зверева Тамара Николаевна
RU2303648C1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ получения молочной кислоты 1922
  • Шапошников В.Н.
SU60A1

RU 2 425 905 C1

Авторы

Орыщенко Алексей Сергеевич

Малышевский Виктор Андреевич

Калинин Григорий Юрьевич

Мушникова Светлана Юрьевна

Харьков Олег Александрович

Гутман Евгений Рафаилович

Банных Олег Александрович

Блинов Виктор Михайлович

Зверева Тамара Николаевна

Блинов Евгений Викторович

Банных Игорь Олегович

Даты

2011-08-10Публикация

2009-12-02Подача