ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ Российский патент 2019 года по МПК C22C38/58 

Описание патента на изобретение RU2683173C1

Изобретение относится к области металлургии, а именно к высокопрочным немагнитным коррозионно-стойким сталям, которые могут быть использованы для изготовления немагнитных высоконагруженных деталей, работающих в условиях интенсивного коррозионного воздействия в энергомашиностроении, авиастроении, специальном судостроении, буровой технике и других областях.

Известна высокоазотистая немагнитная коррозионно-стойкая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, кальций, натрий, ниобий, магний, азот, алюминий, железо и примеси, при следующем соотношении компонентов, мас. %: углерод 0,02-0,06, кремний 0,10-0,60, марганец 9,5-12,5, хром 19,0-21,0, никель 4,5-7,5, молибден 1,2-2,0, ванадий 0,08-0,22, кальций 0,005-0,010, натрий 0,005-0,010, ниобий 0,05-0,15, магний 0,0005-0,001, азот 0,40-0,60, алюминий 0,005-0,01, серу 0,003-0,012, фосфор 0,004-0,025, свинец 0,0002-0,005, висмут 0,0002-0,005, олово 0,0002-0,005, мышьяк 0,0002-0,005, медь 0,05-0,2 и железо остальное.

(RU 2392348, С22С 38/58, C21D 8/02, C21D 8/12 опубликовано 27.02.2010)

Недостатком известной стали является нестабильные прочностные и пластические характеристики при содержании легирующих элементов на нижнем уровне, повышенная магнитная проницаемость из-за возможности появления 5-феррита при содержании ферритообразующих элементов на верхнем уровне, а аустенитообразующих элементов на нижнем уровне.

Наиболее близкой по технической сущности является высокопрочная литейная немагнитная коррозионно-стойкая сталь, содержащая углерод, кремний, хром, марганец, никель, молибден, азот, ванадий, ниобий, иттрий, кальций, бор, железо и неизбежные примеси при следующем соотношении компонентов, мас. %: углерод ≤ 0,06; кремний 0,10-1,0; хром 19,0-23,0; марганец 14,0-16,0; никель 6,0-9,0; молибден 0,5-1,5; азот 0,45-0,67; ванадий 0,10-0,50; ниобий 0,01-0,30; иттрий 0,001-0,05; кальций 0,005-0,010; бор 0,001-0,01; железо и примеси остальное. Известная сталь может содержать, по меньшей мере, один элемент, выбранный из группы, мас. %: 0,01-2,0 медь, 0,001-0,3 титан, 0,01-0,3 цирконий. Известная сталь дополнительно может содержать вольфрам, медь, кобальт, титан, тантал, цирконий, селен (RU 2445397,C22C 38/58, опубликовано 23.06.2010).

Недостатком известной стали являются недостаточно высокие характеристики прочности, пластичности и ударной вязкости стали, так как при затвердевании стали имеет место выделение крупноразмерных карбонитридов титана, ниобия и ванадия (особенно при содержании этих элементов на верхнем уровне) по границам аустенитного зерна, что снижает показатели пластичности и вязкости.

Задачей и техническим результатом изобретения является повышение прочности, пластичности и ударной вязкости стали.

Технический результат достигается тем, что высокопрочная немагнитная коррозионно-стойкая сталь содержит углерод, кремний, хром, марганец, никель, молибден, азот, ванадий, ниобий, медь, по меньшей мере, один из: кальций и барий, железо и примеси, причем дополнительно содержит церий, алюминий, наночастицы карбонитрида титана и карбонитрида циркония размером 30-65 нм, при следующем соотношении компонентов, мас. %: углерод 0,03-0,06; кремний 0,10-0,5; хром 20,0-22,0; марганец 16,0-18,0; никель 8,0-10,0; молибден 0,8-1,5; азот 0,6-1,0; ванадий 0,1-0,2; ниобий 0,05-0,2; медь 0,8-1,5; по меньшей мере, один из: кальций 0,005-0,01 и барий 0,005-0,01; церий 0,005-0,01; алюминий 0,005-0,02; наночастицы карбонитрида титана 0,03-0,1; наночастицы карбонитрида циркония 0,03-0,1; железо и примеси остальное.

Технический результат также достигается тем, что сталь дополнительно содержит, по меньшей мере, один компонент, выбранный из группы, мас. %: бор 0,001-0,008; титан 0,005-0,1 и цирконий 0,02-0,04; суммарное содержание примесей легкоплавких металлов свинца, висмута, олова, сурьмы и мышьяка, не превышает 0,03 мас. %; содержание примесей серы, фосфора и кислорода не превышает, мас. %: сера ≤ 0,006; фосфор ≤ 0,008 и кислород ≤ 0,003; содержание азота, обеспечивающее получение структуры стали без пор, определяется соотношением (мас. %):

N = 0,07 Cr + 0,025Mn - 0,19 С - 0,025 Ni + 0,05 Mo + 0,055 (V + Nb + Zr + Ti + В) + TiCN + ZrCN - 1,05 - 0,015 Cu.

Для достижения высокой прочности, коррозионной стойкости, а также высоких значений пластичности и ударной вязкости сталь по изобретению содержит оптимальное содержание углерода в диапазоне 0,03-0,06 мас. %.

Оптимальным является содержание кремния 0,10-0,5 мас. %. Содержание кремния ниже 0,1 мас. % не обеспечивает достаточной раскисленности стали, а его содержание выше 0,5 мас. % снижает вязкопластические свойства стали.

Содержание марганца на уровне 16,0-18,0 мас. % вместе с хромом обеспечивает повышенную растворимость азота, что позволяет обеспечить стабильность аустенита. Содержание марганца менее 16,0 мас. %, как и пониженное содержание хрома не обеспечивает получение в стали содержания азота более 0,6 мас. %, а увеличение содержания марганца более 18,0 мас. % приводит к снижению вязкостных свойств стали за счет появления излишне большого количества нитридов.

Сталь по изобретению имеет содержание хрома 20,0-22,0 мас. %, что является оптимальным для обеспечения высокого содержания азота и, как следствие, стабильности аустенита и высокой коррозионной стойкости.

При содержании хрома ниже заявленного диапазона концентраций снижается растворимость азота в расплаве, что снижает прочность стали, а при содержании хрома выше верхнего предела возможно образование некоторого количества 5-феррита и нарушается немагнитность стали.

Содержание никеля на уровне 8,0-10,0 мас. % является оптимальным для обеспечения аустенитной структуры при оптимальном содержании азота. Увеличение никеля более 10,0 мас. % снижает растворимость азота в стали.

Содержание молибдена в диапазоне 0,8-1,5 мас. % является оптимальным для обеспечения стабильности аустенита и высокой коррозионной стойкости. При этом молибден в заявленных пределах, также как хром и марганец, увеличивает растворимость азота в стали.

Легирование литейной стали с высоким содержанием азота одновременно ниобием (0,05-0,2 мас. %), ванадием (0,10-0,2 мас. %) и дополнительно титаном (0,005-0,1 мас. %) или цирконием (0,02-0,04 мас. %) повышает прочность, пластичность и ударную вязкость термообработанной стали за счет измельчения действительного зерна, снижения содержания углерода в мартенсите и повышения сил межатомных связей и величины сопротивления отрыву. После оптимальной термообработки сталей происходит сильное упрочнение стали с сохранением высокой ударной вязкости за счет компенсирующего влияния измельчения зерна.

Алюминий в концентрациях 0,005-0,02 мас. %, нитрид которого растворяется в аустените при высоких температурах, также способствует измельчению зерна и препятствует его росту при нагреве.

Присутствие карбонитридов титана и циркония в количестве 0,03-0,1 мас. % оказывают барьерное действие на мигрирующую границу зерен. Карбонитриды титана имеют более округлую форму и меньшие по сравнению с нитридами титана размеры. Карбонитриды титана распределены сравнительно равномерно в литом металле, часть этих включений имеет тенденцию концентрироваться в междуветвиях дендритов и в междендритном пространстве. Кроме того, введение в состав стали наночастиц карбонитрида титана и карбонитрида циркония с размером 30-65 нм позволяет при затвердевании расплава стали образовать большое количество центров кристаллизации, равномерно распределенных в объеме металла.

В процессе затвердевания стали химически стойкие наночастицы карбонитрида титана и карбонитрида циркония, находясь в высокоазотистом расплаве (0,6-1,0 мас. % азота) обладают повышенной устойчивостью к диссоциации и будут являться центрами кристаллизации аустенитных зерен, что существенно измельчит первичное аустенитное зерно, увеличит площадь границ аустенитных зерен, существенно увеличит дисперсность карбидов и нитридов ванадия и ниобия, выпадающих по границам аустенитных зерен, что обеспечит увеличение прочностных свойств и одновременно показателей пластичности и вязкости.

При содержании наночастиц карбонитрида титана и карбонитрида циркония в количестве менее 0,03 мас. % каждого не обеспечивается увеличения прочностных свойств, так как не обеспечивается достаточное измельчение зерна и стабилизации границ зерен.

При содержании наночастиц карбонитрида титана и карбонитрида циркония в количестве более 0,1 мас. % каждого происходит снижение характеристик пластичности и вязкости, так как нитрид циркония и карбонитрид титана начинают выделяться в избыточном количестве.

Наличие в составе стали алюминия в количестве 0,005-0,02 мас. % в сочетании с химически активными элементами кальцием (0,005-0,01 мас. %) и/или барием (0,005-0,01 мас. %), и церием (0,005-0,01 мас. %), благоприятно изменяет форму неметаллических включений, снижает в стали содержание кислорода и серы, уменьшает количество сульфидных включений, очищает и упрочняет границы зерен и измельчает структуру стали, что приводит к повышению прочности, пластичности и ударной вязкости стали.

Кальций и/или барий, и церий также благоприятно воздействуют и на характер нитридных включений, способствуют переходу пленочных включений нитридов алюминия в глобулярные комплексы оксисульфонитридных образований.

Добавки кальция в количестве 0,005-0,01 мас. % затрудняет выделение избыточных фаз по границам зерен, чем сильно повышает стойкость против межкристаллитной коррозии и способствует повышению пластичности. Совместное введение в сталь кальция и бария значительно улучшает кинетику процесса взаимодействия кальция с примесями. Барий в большей степени глобуляризует включения, чем кальций. Значительная часть включений приобретает округлую форму. Присадки бария способствуют (по сравнению с кальцием и церием) образованию более мелких глобулей. Модифицирование кальцием и барием измельчает сульфиды и приводит к перераспределению включений в дендритной структуре в результате увеличения сульфидных включений в осях.

Легирование медью позволяет повысить коррозионную стойкость стали и упрочнять сталь при старении, за счет наноразмерных выделений медьсодержащей фазы. При содержании меди меньше чем 0,8 мас. % эффект упрочнения твердого раствора не наблюдается, а содержание меди более 1,5 мас. % может привести к растрескиванию стали.

Дополнительное микролегирования бором (0,001-0,008 мас. %) в сочетании с азотом приводит к образованию нитридов бора, которые сегрегируют по границам зерен, преимущественно бывшим аустенитным, что, подавляя зернограничное проскальзывание, повышает время до разрушения. Кроме того, бор повышает сопротивление коррозии под напряжением. Бор образует наночастицы нитрида бора в теле зерен и по дислокационным стенкам, что позволяет поднять температуру эксплуатации за счет эффекта стабилизации дислокационной структуры. При этом наночастицы бора увеличивают эффект воздействия наночастиц карбонитрида циркония и карбонитрида титана на прочность и пластичность стали.

В заявляемой стали реализован механизм наноразмерного саморегулирования структуры в условиях длительной эксплуатации, заключающийся в закреплении дислокаций наноразмерными выделениями (размером не более 20-60 нм) нитрида бора, карбонитрида циркония и карбонитрида титана, обладающими высокой стабильностью как при воздействии низких, так и повышенных температур и высоких напряжений, что существенно повышает стабильность свойств заявленной стали.

Предлагаемая сталь отличается от известной ограничением содержания примесей серы до 0,006 мас. % и фосфора до 0,008 мас. %, что способствует получению более высоких значений пластичности и ударной вязкости. Такое содержание серы и фосфора надежно обеспечивается современными методами получения стали. При превышении содержания заявленных содержаний серы и фосфора резко увеличивается неоднородность структуры стали, что в свою очередь снижает ее прочность и пластичность. Кислород также неизбежно присутствует в составе стали, в основном в виде неметаллических включений. При его содержании свыше 0.003 мас. % в стали растет содержание неметаллических включений, что ухудшает свойства стали и вызывает их неоднородность.

Свинец, висмут, олово, сурьма и мышьяк являются примесями, которые негативно влияют на вязко-пластические свойства стали. Их суммарное содержание целесообразно ограничить величиной 0,03 мас. %.

Содержание азота 0,60-1,00 мас. % оптимально для обеспечения стабильности аустенита, высокой прочности и коррозионной стойкости.

Оптимальное содержание азота в твердом растворе и получения структуры стали без пор определяется следующим соотношением:

N = 0,07 Cr + 0,025Mn - 0,19 С - 0,025 Ni + 0,05 Mo + 0,055 (V + Nb + Zr + Ti + B) + TiCN + ZrCN - 1,05 - 0,015 Cu.

В таблицах 1 и 2 приведены сведения о химических составах стали по изобретению (1-3) и известной стали (4), а также их механические свойства, полученные после оптимальной термообработки.

Содержание азота, определенное с использованием вышеуказанным соотношением, на нижнем, среднем и верхнем пределах легирования составило:

- на нижнем пределе легирования 0,60 мас. %;

- на среднем пределе легирования 0,75 мас. %;

- не верхнем пределе легирования 1,0 мас. %.

Выплавку стали по изобретению проводили в 150-кг индукционной печи с разливкой металла на литые заготовки. Азот вводили в состав стали азотированными ферросплавами хрома и марганца. Карбонитрид циркония и карбонитрид титана в виде наночастиц размером 30-65 нм вводили в металлических капсулах на струю металла при выпуске плавки в ковш. Металл разливали в слитки диаметром 150 мм. После нагрева в печи до температуры 1150-1200°С слитки ковали на прутки для изготовления продольных образцов на растяжение и ударный изгиб. Образцы подвергали закалке от температуры 1050°С, выдержка 3 ч., охлаждение в воду.

Испытания на растяжение проводили на цилиндрических образцах пятикратной длины с диаметром расчетной части 6 мм в соответствии с ГОСТ 1497-84. Определение ударной вязкости при нормальной температуре производилось на образцах типа 11 по ГОСТ 9454-78.

Фазовый состав металла определяли на рентгеновском дифрактометре ДРОН-3М.

Как видно из таблицы 2, предлагаемая сталь имеет значительное преимущество по уровню прочности, пластичности и ударной вязкости по сравнению известной сталью. Сталь по изобретению имеет более мелкое зерно, что обеспечивается выбранным соотношением компонентов.

Похожие патенты RU2683173C1

название год авторы номер документа
АУСТЕНИТНО-ФЕРРИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2700440C1
КОРРОЗИОННО-СТОЙКАЯ ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Гордюк Любовь Юрьевна
RU2696792C1
Экономнолегированная хладостойкая высокопрочная сталь 2020
  • Мирзоян Генрих Сергеевич
  • Володин Алексей Михайлович
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
RU2746599C1
Отливка из высокопрочной износостойкой стали и способы термической обработки отливки из высокопрочной износостойкой стали 2020
  • Мутыгуллин Альберт Вакильевич
  • Мартынюк Виктор Николаевич
  • Концевой Семён Израилович
  • Ананьев Павел Петрович
  • Плотникова Анна Валериевна
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзулла Алибала Оглы
  • Щепкин Иван Александрович
  • Кафтанников Александр Сергеевич
RU2753397C1
Хладостойкая высокопрочная сталь 2020
  • Мирзоян Генрих Сергеевич
  • Орлов Александр Сергеевич
  • Володин Алексей Михайлович
  • Дегтярев Александр Федорович
RU2746598C1
ТОЛСТОЛИСТОВАЯ ХЛАДОСТОЙКАЯ СТАЛЬ 2017
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Орлов Александр Сергеевич
  • Ершов Николай Сергеевич
RU2665854C1
ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ УСТРОЙСТВ ХРАНЕНИЯ ОТРАБОТАВШИХ ЯДЕРНЫХ МАТЕРИАЛОВ 2022
  • Дегтярев Александр Фёдорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Дуб Алексей Владимирович
RU2804233C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2011
  • Дегтярев Александр Федорович
  • Назаратин Владимир Васильевич
  • Егорова Марина Александровна
  • Горбач Владимир Дмитриевич
  • Завьялов Юрий Николаевич
RU2454478C1
СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОТЛИВКИ ИЗ ВЫСОКОПРОЧНОЙ ИЗНОСОСТОЙКОЙ СТАЛИ (ВАРИАНТЫ) 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзулла Алибала Оглы
  • Щепкин Иван Александрович
  • Кафтанников Александр Сергеевич
  • Муханов Евгений Львович
RU2750299C2
ИЗНОСОСТОЙКАЯ МЕТАСТАБИЛЬНАЯ АУСТЕНИТНАЯ СТАЛЬ 2019
  • Дегтярев Александр Федорович
  • Скоробогатых Владимир Николаевич
  • Нуралиев Фейзулла Алибала Оглы
  • Щепкин Иван Александрович
  • Кафтанников Александр Сергеевич
  • Муханов Евгений Львович
  • Ананьев Павел Петрович
  • Концевой Семен Израилович
  • Плотникова Анна Валериевна
RU2710760C1

Реферат патента 2019 года ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ

Изобретение относится к области металлургии, а именно к высокопрочным немагнитным коррозионно-стойким сталям, используемым для изготовления немагнитных высоконагруженных деталей, работающих в условиях интенсивного коррозионного воздействия в энергомашиностроении, авиастроении, специальном судостроении, буровой технике. Сталь содержит, мас.%: углерод 0,03-0,06, кремний 0,10-0,5, хром 20,0-22,0, марганец 16,0-18,0, никель 8,0-10,0, молибден 0,8-1,5, азот 0,6-1,0, ванадий 0,1-0,2, ниобий 0,05-0,2, по меньшей мере один из: кальций 0,005-0,01 и барий 0,005-0,01, медь 0,8-1,5, алюминий 0,005-0,02, наночастицы карбонитрида титана 0,03-0,1, наночастицы карбонитрида циркония 0,03-0,1, церий 0,005-0,01, железо и примеси – остальное. Наночастицы карбонитрида титана и карбонитрида циркония имеют размер 30-65 нм. Сталь может дополнительно содержать по меньшей мере один элемент, выбранный из группы, мас.%: бор 0,001-0,008, титан 0,005-0,1 и цирконий 0,02-0,04. Суммарное содержание легкоплавких примесей свинца, висмута, олова, сурьмы и мышьяка не превышает 0,03 мас.%, а содержание примесей серы, фосфора и кислорода не превышает, мас.%: сера ≤ 0,006, фосфор ≤ 0,008 и кислород ≤ 0,003. Обеспечивается повышение прочности, пластичности и ударной вязкости стали. 4 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 683 173 C1

1. Высокопрочная немагнитная коррозионно-стойкая сталь, содержащая углерод, кремний, хром, марганец, никель, молибден, азот, ванадий, ниобий, медь, по меньшей мере один из кальция и бария, железо и примеси, отличающаяся тем, что она дополнительно содержит церий, алюминий, наночастицы карбонитрида титана и карбонитрида циркония размером 30-65 нм, при следующем соотношении компонентов, мас.%: углерод 0,03-0,06, кремний 0,10-0,5, хром 20,0-22,0, марганец 16,0-18,0, никель 8,0-10,0, молибден 0,8-1,5, азот 0,6-1,0, ванадий 0,1-0,2, ниобий 0,05-0,2, медь 0,8-1,5, по меньшей мере один из кальция 0,005-0,01 и бария 0,005-0,01, церий 0,005-0,01, алюминий 0,005-0,02, наночастицы карбонитрида титана 0,03-0,1, наночастицы карбонитрида циркония 0,03-0,1, железо и примеси - остальное.

2. Сталь по п. 1, отличающаяся тем, что она дополнительно содержит по меньшей мере один компонент, выбранный из группы, мас.%: бор 0,001-0,008, титан 0,005-0,1 и цирконий 0,02-0,04.

3. Сталь по п. 1, отличающаяся тем, что суммарное содержание легкоплавких примесей свинца, висмута, олова, сурьмы и мышьяка не превышает 0,03 мас.%.

4. Сталь по п. 1, отличающаяся тем, что содержание примесей серы, фосфора и кислорода не превышает, мас.%: сера ≤ 0,006, фосфор ≤ 0,008 и кислород ≤ 0,003.

5. Сталь по п. 1, отличающаяся тем, что содержание азота, обеспечивающее получение структуры стали без пор, определяется соотношением, мас.%:

N = 0,07⋅Cr + 0,025⋅Mn - 0,19⋅С - 0,025⋅Ni + 0,05⋅Mo + 0,055⋅(V + Nb + Zr + Ti + В) + TiCN + ZrCN - 1,05 - 0,015⋅Cu.

Документы, цитированные в отчете о поиске Патент 2019 года RU2683173C1

ВЫСОКОАЗОТИСТАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2011
  • Назаратин Владимир Васильевич
  • Дегтярев Александр Федорович
  • Егорова Марина Александровна
  • Горбач Владимир Дмитриевич
  • Завьялов Юрий Николаевич
RU2451765C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2011
  • Дегтярев Александр Федорович
  • Назаратин Владимир Васильевич
  • Егорова Марина Александровна
  • Горбач Владимир Дмитриевич
  • Завьялов Юрий Николаевич
RU2454478C1
ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ ЛИТЕЙНАЯ СТАЛЬ И СПОСОБ ЕЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ 2010
  • Горбач Владимир Дмитриевич
  • Завьялов Юрий Николаевич
  • Назаратин Владимир Васильевич
  • Дегтярев Александр Федорович
  • Егорова Марина Александровна
  • Орыщенко Алексей Сергеевич
  • Калинин Георгий Юрьевич
  • Стецуковский Евгений Васильевич
  • Коробов Дмитрий Павлович
RU2447185C1
ВЫСОКОПРОЧНАЯ ЛИТЕЙНАЯ НЕМАГНИТНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2010
  • Банных Олег Александрович
  • Блинов Виктор Михайлович
  • Блинов Евгений Викторович
  • Костина Мария Владимировна
  • Мурадян Саркис Ованесович
  • Ригина Людмила Георгиевна
  • Солнцев Константин Александрович
RU2445397C1
КОНСТРУКЦИОННАЯ КРИОГЕННАЯ АУСТЕНИТНАЯ ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ, В ТОМ ЧИСЛЕ В БИОАКТИВНЫХ СРЕДАХ, СВАРИВАЕМАЯ СТАЛЬ И СПОСОБ ЕЕ ОБРАБОТКИ 2015
  • Филонов Михаил Рудольфович
  • Баженов Вячеслав Евгеньевич
  • Глебов Александр Георгиевич
  • Капуткина Людмила Михайловна
  • Капуткин Дмитрий Ефимович
  • Киндоп Владимир Эдельбертович
  • Свяжин Анатолий Григорьевич
  • Смарыгина Инга Владимировна
  • Блинов Евгений Викторович
RU2584315C1
EP 3214194 A1, 06.09.2017
Устройство для контроля импульсных трансформаторов в составе электронных блоков 1987
  • Байда Николай Прокофьевич
  • Котов Игорь Николаевич
  • Олоничев Александр Павлович
  • Очкуров Николай Андреевич
  • Шпилевой Валерий Терентьевич
SU1471158A1

RU 2 683 173 C1

Авторы

Дегтярев Александр Федорович

Скоробогатых Владимир Николаевич

Назаратин Владимир Васильевич

Муханов Евгений Львович

Гордюк Любовь Юрьевна

Даты

2019-03-26Публикация

2018-05-31Подача