Изобретение относится к биотехнологии, в частности к способам получения иммобилизованных нефтеокисляющих микроорганизмов в гранулах со свойствами, характерными для порошкообразного биопрепарата, пригодного для использования в грунтовых и водных средах при очистке окружающей среды.
Известен способ [Композиция для получения носителя иммобилизированных микроорганизмов, расщепляющих углеводороды, и способ получения носителя. Патент РФ 2298033], состоящий в получении биодеструктора углеводородов путем иммобилизации микроорганизмов на целлюлозосодержащем носителе.
Композиция включает носитель с иммобилизованными клетками, гидрофобизатор, эмульгатор и разбавитель. Основой носителя могут быть опилки, стружка, щепа, солома, кукурузные кочерыжки; гидрофобизатором носителя является олифа; эмульгатор взят из группы (поливиниловый спирт, карбоксиметилцеллюлоза, оксиэтилцеллюлоза, этилцеллюлоза, пектин, желатина, изопропиловый спирт, бутиловый спирт), а разбавитель - из группы (уайт-спирит, петролейный эфир, серный эфир, 5-20 - водный диметилсульфоксид, вода). Количественный состав композиции (мас.ч.):
Иммобилизацию клеток проводят путем их адсорбции на подготовленный носитель в течение 3 суток при инкубации на орбитальном шейкере.
К недостаткам этого способа следует отнести многостадийность и длительность процесса, включающего стадии измельчения микробной культуры, ее смешения, растворения, тепловой сушки и иммобилизации микробных клеток. Кроме того, предлагаемый способ получения носителя требует проведения дополнительных мероприятий по защите окружающей среды, поскольку в технологии его изготовления использованы растворители (петролейный, серный эфиры, уайт-спирит, диметилсульфоксид), которые по завершении процесса представляют опасные отходы. Способ не позволяет получать мелкодисперсные порошки биодеструкторы.
Также известен способ [Способ получения биокатализатора в полисахаридном носителе. Авторское свидетельство СССР №1742330], состоящий в использовании полимера фурцеллорона, 4 г которого помещают в 100 см3 0,2% раствора хлорида калия на 1 ч при температуре 22°С, а затем перемешивают в течение 40 минут при температуре 80°С. Готовый раствор полимера охлаждают до 65°С и смешивают с суспензией клеток в равных объемах до конечной концентрации полимера 1,5-3,0% и прокапывают в двухфазную стабилизирующую систему, состоящую из вазелинового масла и 10% раствора хлорида калия, охлажденную до температуры 5°С. Продолжительность выдержки гранул в стабилизирующей системе составляет 10 минут. Сформированные сферические гранулы имеют размер 5-11 мм.
К недостаткам данного способа следует отнести:
- невозможность получения мелкодисперсного порошка биодеструктора;
- высокую температуру раствора полимера (65°С), приводящую к неизбежной термоинактивации части микробной популяции при смешении с ним;
- крупный размер гранул биокатализатора и малую площадь их поверхности, снижающие площадь контакта клеток с углеводородами и увеличивающие период высвобождения и адаптации иммобилизованных клеток в среде биохимического процесса, что недостаточно для эффективной деструкции.
Наиболее близким по технической сущности к заявляемому изобретению является способ [Способ получения иммобилизованных микроорганизмов, разрушающих ксенобиотики. Авторское свидетельство СССР №1705345], состоящий в приготовлении 4% раствора агар-агара (агарозы) в физиологическом растворе (дистиллированной воде) и смешивании в равных количествах с культурой клеток до остаточной концентрации агар-агара - 2%. После тщательного перемешивания эту смесь через отверстие диаметром 3-4 мм прокапывают в охлажденное вазелиновое масло с динамической вязкостью около 400 Па·с. При этом получают гранулы, которые отделяют и отмывают от вазелинового масла с помощью ПАВ, а затем и от ПАВ. Общее время формирования гранул, включая отмывку, составляет 15-20 минут.
У известного и заявляемого изобретения общим является получение гидрогеля полисахарида с иммобилизованными в нем клетками и последующее его гранулирование.
К недостаткам известного способа следует отнести:
- отмывка гранул от масла с помощью ПАВ, с одной стороны, придает поверхности гранул гидрофильные свойства, что снижает их адгезию с углеводородами, а с другой, подвергает клетки инактивирующему воздействию детергента (ПАВ) [Самсонова А.С., Алещенкова З.М., Лим Б.Р., Хвин С.В., Семочкина Н.Ф. и др. Очистка сточных вод от дизельного топлива с помощью иммобилизованных микроорганизмов-деструкторов// Биотехнология, 2003, №4, с.83-87];
- при смешивании микробной культуры с раствором агар-агара его температура должна быть выше 40°С (при температуре от 36 до 40°С раствор агар-агара застывает [Руководство к практическим занятиям по микробиологии, иммунологии и вирусологии. Под ред. М.П.Зыкова. - М.: Медицина, 1977]), а при таких температурах неизбежна термоинактивация нефтеокисляющих микроорганизмов;
- относительно большой размер получаемых гранул (3-4 мм) увеличивает период высвобождения и адаптации иммобилизованных клеток в среде биохимического процесса вследствие незначительной площади контакта клеток с субстратом [Коваленко Г.А., Перминова Л.В., Комова О.В., Симаков А.В., Хомов В.В., Боровцова О.Ю., Рудина Н.А. Углеводородсодержащие макроструктурированные керамические носители для адсорбционной иммобилизации ферментов и микроорганизмов. Биокаталитические свойства адсорбционной инвертазы// Биотехнология, 2003, №4, с.52-62].
Основными условиями для повышения эффективности нефтеокисляющих микроорганизмов при деструкции углеводородов являются [Синицин А.П., Райнина Е.И., Лозинский В.И., Спасов С.Д. Иммобилизованные клетки микроорганизмов. М.: Изд-во МГУ, 1994, с.288]:
- наличие в зоне биохимического процесса высокой концентрации жизнеспособных углеводородокисляющих микроорганизмов;
- хороший контакт клеток (препарата) с углеводородами.
Задачей изобретения является разработка способа получения иммобилизованных нефтеокисляющих микроорганизмов в гранулах по композиции, представляющей собой конечный продукт для использования в грунтовых и водных средах при очистке окружающей среды от загрязнений углеводородами.
Технический результат достигается благодаря тому, что в способе получения гранул, содержащих нефтеокисляющие микроорганизмы, используют:
- в качестве основы гидрогеля для иммобилизации микроорганизмов 3 или 5% водный раствор альгината натрия (полисахарида), позволяющего при взаимодействии с солями металлов образовывать гель при температурах, не вызывающих термоинактивацию нефтеокисляющих микроорганизмов (15-30°С) [Lim F. // Microencapsulation of living cells and tissues - In: Biomedical applications of Microencapsulations/ Ed.F.Lim. Boca Raton, CRC Press, Inc., 1984, p.137-154];
- в качестве отвердителя (стабилизатора) геля малорастворимую соль кальция (сульфат кальция), обеспечивающую замедление (пролонгирование) процесса отверждения геля на период времени, достаточный для механического дробления геля на гранулы при соотношении гелеобразующих реагентов в смеси с микробной суспензией (на 1 дм3):
для 3% раствора альгината натрия - 0,36 дм3;
для 5% раствора альгината натрия - 0,15 дм3;
раствор 5% раствора сульфата кальция - 0,06 дм3 (0,07 дм3);
- для получения гранул, содержащих иммобилизованные нефтеокисляющие микроорганизмы - метод гомогенизации реагентов в присутствии гидрофобизированного высокодисперсного порошка диоксида кремния с размерами частиц 15-25 нм в смесителе с частотой перемешивания от 2000 до 3000 об·мин-1, вместимостью 5 или 10 дм3, оснащенного комбинированной механической мешалкой и системой ввода реагентов в полость гомогенизатора [Макаров Ю.И. Аппараты для смешения сыпучих материалов. М., 1973, с.130-132];
- для придания получаемым гранулам композиции конечного продукта, по своим свойствам пригодного для использования в грунтовых и водных средах при очистке окружающей среды, - гидрофобизированный высокодисперсный порошок диоксида кремния, обеспечивающий модификацию поверхности гранул за счет придания им гидрофобных свойств и сыпучести [Инкапсулированные растворы обезвреживающих реагентов для химических и биологических средств. Solid-water detoxifying reagents for chemical and biological agents: Пат. США 7030071, МПК3 А62D 3/00, С01В 15/055. The Regents of the Univ. of California, Hoffman Dennis M., Chiu Ing Lap. №10/085512; заявл. 26.02.2002; опубл. 18.04.2006; НПК 510/110. Англ.], [Нечаев А.П., Кочеткова А.А., Зайцев А.Н. Пищевые добавки. М., 2002, с.120-125].
Сущность предлагаемого изобретения заключается в следующем.
В суспензию клеток нефтеокисляющих микроорганизмов при температуре 15-30°С, содержащую 0,4-1,5 млрд клеток/см3, при постоянном перемешивании в смесителе при частоте перемешивания 2000-3000 об/мин вносят предварительно приготовленный 3 или 5% раствор альгината натрия. Процесс смешения продолжают в течение одной минуты (до получения однородной массы). Затем, не выключая перемешивание, в полученную альгинатно-микробную смесь вносят приготовленный раствор стабилизатора геля (5% раствор сульфата кальция) и процесс смешения продолжают в течение одной минуты.
Полученный полуфабрикат сразу же переносят в питатель, который подключен к системе подачи реагентов смесителя вместимостью 5 или 10 дм3, заполненный гидрофобизированным высокодисперсным диоксидом кремния (например, кабосил или флуосил) при соотношении диоксида кремния и полуфабриката (мас.ч.) 1:2,5. Полуфабрикат с расходом 300 см3/мин из питателя подается в полость смесителя. Перемешивание осуществляют при частоте 2000-3000 об/мин в течение 3 минут. После выключения перемешивания полученные гранулы в течение 30 минут выдерживают в полости гомогенизатора для завершения отверждения геля в гранулах (химической реакции замещения ионов натрия на ионы кальция).
Полученные гранулы как композиция, представляющая собой конечный продукт используемой технологии, представляет собой легко сыпучий порошок светло-бежевого цвета с размером частиц не более 0,5 мм, содержащий от 280 до 640 млн клеток/г. Порошок не смачивается водой, но хорошо сорбируется углеводородной пленкой нефтепродукта, находящейся на водной поверхности или в почвенном грунте.
Таким образом, технологический процесс получения гранул, содержащих иммобилизованные микроорганизмы, состоит из трех стадий:
- смешение суспензии нефтеокисляющих микроорганизмов с гелеобразующими реагентами (получение полуфабриката);
- диспергирование полуфабриката с диоксидом кремния в смесителе для получения гранул;
- выдержка полученного порошкообразного продукта в гомогенизаторе для отверждения геля в гранулах с иммобилизованными микробными клетками.
Наличие причинно-следственной связи между совокупностью существенных признаков заявляемого объекта и достигаемым техническим результатом показано в таблице.
Изобретение позволяет за счет смешения микробной суспензии с гелеобразующими реагентами (растворами альгината натрия и сульфата кальция) и последующей гомогенизации полученной смеси с гидрофобизированным порошком диоксида кремния получать гранулы размером не более 0,5 мм, содержащие иммобилизованные нефтеокисляющие микроорганизмы.
Возможность осуществления заявляемого изобретения показана следующими примерами.
В качестве нефтеокисляющих микроорганизмов могут быть использованы культуры: дрожжевых клеток - рода Yarowia Lipolitica, бактерий: псевдомонад - рода Pseudomonas Stutzeri, родококков - родов Rhodococcus species и Rhodococcus erythropolis, входящие в состав ассоциации препарата «Деворойл» [Патент №2114071 от 22.05.97 г. Способ очистки почвы, природных и сточных вод, загрязненных нефтью и нефтепродуктами, с использованием биопрепаратов].
Количественный состав получаемых гранул (мас.ч.):
При использовании 3% раствора альгината натрия
При использовании 5% раствора альгината натрия
В качестве оборудования для получения гранул использован высокоскоростной смеситель-гомогенизатор вместимостью 5 или 10 дм3 производства ООО «Биомашприбор», г.Йошкар-Ола.
Пример 1. Получение гранул, содержащих иммобилизованные клетки Rhodococcus erythropolis.
В суспензию клеток Rhodococcus erythropolis при температуре 15-20°С (14 мас.ч.), содержащую 700 млн клеток/см3, при постоянном перемешивании в смесителе при частоте перемешивания 2000 об/мин вносят предварительно приготовленный 3% раствор альгината натрия (4 мас. ч.). Процесс смешения продолжают в течение одной минуты (до получения однородной массы). Затем, не выключая перемешивание, в полученную альгинатно-микробную смесь вносят приготовленный раствор стабилизатора геля (5% раствор сульфата кальция) (7 мас. ч) и процесс смешения продолжают в течение одной минуты.
Полученный полуфабрикат сразу же переносят в питатель, который подключен к системе подачи реагентов в смеситель вместимостью 5 дм3, заполненный гидрофобизированным высокодисперсным диоксидом кремния (например, кабосил или флуосил) (1 мас. ч.). Полуфабрикат с расходом 300 см3/мин из питателя подается в полость смесителя. Перемешивание осуществляют при частоте 2000 об/мин в течение 3 минут. После завершения перемешивания полученные гранулы в течение 30 минут выдерживают в полости гомогенизатора для завершения отверждения геля в гранулах (химической реакции замещения ионов натрия на ионы кальция).
Полученные гранулы как композиция по структуре представляют собой легко сыпучий порошок (сыпучесть 3,8 г/с) светло-бежевого цвета с размером частиц не более 0,5 мм, содержащий 500 млн клеток/г. Порошок не смачивается водой, но хорошо сорбируется углеводородной пленкой нефтепродукта, находящейся на водной поверхности или в почвенном грунте.
Пример 2. Получение гранул, содержащих иммобилизованные клетки Rhodococcus erythropolis.
В суспензию клеток Rhodococcus erythropolis при температуре 25-30°С (14 мас.ч.), содержащую 1,5 млрд клеток/см3, при постоянном перемешивании в смесителе при скорости вращения мешалки 2000 об/мин вносят предварительно приготовленный 5% раствор альгината натрия (6 мас. ч.). Процесс смешения продолжают в течение одной минуты (до получения однородной массы). Затем, не выключая перемешивание, в полученную альгинатно-микробную смесь вносят приготовленный раствор стабилизатора геля (5% раствор сульфата кальция) (10 мас.ч.) и процесс смешения продолжают в течение одной минуты.
Полученный полуфабрикат сразу же переносят в питатель, который подключен к системе подачи реагентов в смеситель вместимостью 5 дм3, заполненный гидрофобизированным высокодисперсным диоксидом кремния (например, кабосил или флуосил) (1,5 мас. ч.). Полуфабрикат с расходом 300 см3/мин из питателя подается в полость смесителя. Перемешивание осуществляют при частоте 2000 об/мин в течение 3 минут.
После завершения перемешивания полученные гранулы в течение 30 минут выдерживают в полости гомогенизатора для завершения отверждения геля в гранулах (химической реакции замещения ионов натрия на ионы кальция).
Полученные гранулы как композиция конечного продукта в используемой технологии представляли собой легко сыпучий порошок (сыпучесть 4,5 г/с) светло-бежевого цвета с размером частиц не более 0,5 мм, содержащий 640 млн клеток/г. Порошок не смачивается водой, но хорошо сорбируется углеводородной пленкой нефтепродукта, находящейся на водной поверхности или в почвенном грунте.
Пример 3. Получение гранул, содержащих иммобилизованные клетки Pseudomonas Stutzeri.
Получение гранул осуществляют в соответствии с порядком, приведенным в примере 1, при температуре 22-25°С при том же соотношении гелеобразователя, стабилизатора геля и диоксида кремния, с использованием 14 мас. ч. суспензии клеток, содержащей 400 млн клеток/ см3.
Полученные гранулы по структуре представляли собой легко сыпучий порошок (сыпучесть 3,8 г/с) светло-бежевого цвета с гранулами размером не более 0,5 мм, содержащий 350 млн клеток/г. Порошок не смачивается водой, но хорошо сорбируется углеводородной пленкой нефтепродукта, находящейся на водной поверхности или в почвенном грунте.
Пример 4. Получение гранул, содержащих иммобилизованные клетки Pseudomonas Stutzeri
Получение гранул, содержащих иммобилизованные клетки Pseudomonas Stutzeri, осуществляют в соответствии с порядком, приведенным в примере 1, только при температурных условиях и при соотношении компонентов по примеру 2.
Полученные гранулы по структуре представляли собой легко сыпучий порошок (сыпучесть 4,5 г/с) светло-бежевого цвета с гранулами размером не более 0,5 мм, содержащий 350 млн клеток/г Pseudomonas Stutzeri. Порошок не смачивается водой, но хорошо сорбируется углеводородной пленкой нефтепродукта, находящейся на водной поверхности или в почвенном грунте.
Пример 5. Получение гранул, содержащих иммобилизованные клетки Yarowia Lipolitica
Получение гранул, содержащих иммобилизованные клетки Yarowia Lipolitica при их концентрации в суспензии 370 млн клеток/см3, проводят по примеру 1 при той же температуре и при таком же соотношении компонентов. Полученные гранулы представляли собой сыпучий порошок (сыпучесть 3,8 г/с) светло-бежевого цвета с размером гранул не более 0,5 мм. В 1 г порошка содержалось 290 млн клеток.
Пример 6. Получение гранул, содержащих иммобилизованные клетки Yarowia Lipolitica при их концентрации 370 млн клеток/см3, проводят по примеру 1, только при температурных условиях и соотношении компонентов по примеру 2. Полученные гранулы представляли собой сыпучий порошок (сыпучесть 4,5 г/с) светло-бежевого цвета с размером гранул не более 0,5 мм. В 1 г порошка содержалось 280 млн клеток.
Пример 7. Получение гранул, содержащих иммобилизованные клетки, проводят по примеру 1 при тех же температурных условиях и соотношениях компонентов, только в качестве микробной культуры используют ассоциацию культур на основе Rhodococcus erythropolisa, Pseudomonas Stutzeri, Yarowia Lipolitica, суспензии которых взяты в равных объемах и в прежних концентрациях. Полученные гранулы представляли собой сыпучий порошок (сыпучесть 3,8 г/с) светло-бежевого цвета с размером гранул не более 0,5 мм.
Пример 8. Получение гранул, содержащих иммобилизованные клетки на основе ассоциации микроорганизмов, приготовленной по примеру 7, проводят по примеру 1, только при температурных условиях и соотношении компонентов по примеру 2. Перемешивание проводят при частоте 3000 об/мин. Полученный продукт также представлял собой сыпучий порошок (сыпучесть 4,5 г/с) светло-бежевого цвета с размером гранул не более 0,5 мм.
Пример 9. Получение гранул, содержащих иммобилизованные клетки, проводят в гомогенизаторе объемом 10 дм3 с использованием исходных компонентов и при температуре по примеру 1, только механическое дробление полуфабриката проводят при частоте перемешивания 2000 об/мин. Полученный продукт представляет собой сыпучий порошок (сыпучесть 3,9 г/с) светло-бежевого цвета с размером гранул не более 0,5 мм.
Пример 10. Получение гранул, содержащих иммобилизованные клетки, проводят в гомогенизаторе объемом 10 дм3 с использованием исходных компонентов и температуры по примеру 1, при частоте перемешивания 3000 об/мин. Полученный продукт представляет собой сыпучий порошок (сыпучесть 3,8 г/с) светло-бежевого цвета с размером гранул не более 0,5 мм.
Изобретение позволяет получать иммобилизованные нефтеокисляющие микроорганизмы в гранулах по композиции, представляющей собой конечный продукт для использования в грунтовых и водных средах при очистке окружающей среды от загрязнений.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ МИКРОБИОЛОГИЧЕСКОЙ ОЧИСТКИ НЕФТЯНЫХ ШЛАМОВ И ЗАГРЯЗНЕННОГО НЕФТЕПРОДУКТАМИ ГРУНТА (ВАРИАНТЫ) | 2006 |
|
RU2311237C1 |
БИОПРЕПАРАТ ДЛЯ БИОРЕМЕДИАЦИИ НЕФТЕЗАГРЯЗНЕННЫХ ПОЧВ ДЛЯ КЛИМАТИЧЕСКИХ УСЛОВИЙ КРАЙНЕГО СЕВЕРА | 2013 |
|
RU2565549C2 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ НОСИТЕЛЯ ИММОБИЛИЗОВАННЫХ МИКРООРГАНИЗМОВ, РАСЩЕПЛЯЮЩИХ УГЛЕВОДОРОДЫ, И СПОСОБ ПОЛУЧЕНИЯ НОСИТЕЛЯ | 2005 |
|
RU2298033C2 |
БИОСОРБЕНТ ДЛЯ ОЧИСТКИ ПОЧВЫ И ВОДЫ ОТ НЕФТИ И НЕФТЕПРОДУКТОВ | 2015 |
|
RU2628692C2 |
Препарат для очистки почв и водных объектов от нефти и нефтепродуктов | 2015 |
|
RU2615464C1 |
МИКРОБНЫЙ ПРЕПАРАТ ДЛЯ УТИЛИЗАЦИИ УГЛЕВОДОРОДНЫХ ЗАГРЯЗНЕНИЙ | 2018 |
|
RU2697278C1 |
МИКРОБНЫЙ ПРЕПАРАТ ДЛЯ УТИЛИЗАЦИИ УГЛЕВОДОРОДНЫХ ЗАГРЯЗНЕНИЙ | 2018 |
|
RU2697377C1 |
МИКРОБНЫЙ ПРЕПАРАТ ДЛЯ УТИЛИЗАЦИИ УГЛЕВОДОРОДНЫХ ЗАГРЯЗНЕНИЙ | 2018 |
|
RU2697381C1 |
МИКРОБНЫЙ ПРЕПАРАТ ДЛЯ УТИЛИЗАЦИИ УГЛЕВОДОРОДНЫХ ЗАГРЯЗНЕНИЙ | 2018 |
|
RU2697317C1 |
МИКРОБНЫЙ ПРЕПАРАТ ДЛЯ УТИЛИЗАЦИИ УГЛЕВОДОРОДНЫХ ЗАГРЯЗНЕНИЙ | 2018 |
|
RU2708959C1 |
Изобретение относится к области биотехнологии. Предложен способ получения гранул, содержащих иммобилизованные нефтеокисляющие микроорганизмы. Осуществляют иммобилизацию нефтеокисляющих микроорганизмов при температуре 15-30°С в гелеобразующей среде, образованной 3-5% раствором альгината натрия и 5% раствором сульфата кальция. Затем осуществляют одновременное гомогенизирование и гранулирование иммобилизованных микроорганизмов с гидрофобизированным порошком диоксида кремния при скорости вращения мешалки от 2000 до 3000 об/мин. Получают гранулы с гидрофобизированной поверхностью размером не более 0,5 мм. Полученные гранулы как композиция представляют собой легко сыпучий порошок с содержанием от 280 до 640 млн микроорганизмов/г. 1 табл.
Способ получения гранул, содержащих иммобилизованные нефтеокисляющие микроорганизмы, включающий иммобилизацию микроорганизмов в гелеобразующей среде с последующим гранулированием, отличающийся тем, что иммобилизацию нефтеокисляющих микроорганизмов при концентрации в суспензии 0,4-1,5 млрд клеток/см3 осуществляют при температуре 15-30°С, в качестве гелеобразующих реагентов используют 3-5%-ный раствор альгината натрия и 5%-ный раствор сульфата кальция, гранулирование осуществляют на стадии гомогенизации иммобилизованных микроорганизмов с гидрофобизированным порошком диоксида кремния при скорости вращения мешалки от 2000 до 3000 об/мин и получением гранул с гидрофобизированной поверхностью размером не более 0,5 мм при исходном соотношении компонентов, мас.ч.:
полученные гранулы выдерживают в течение 30 мин для отверждения геля в них.
Способ получения иммобилизованных микроорганизмов, разрушающих ксенобиотики | 1988 |
|
SU1705345A1 |
СПОСОБ ОЧИСТКИ ВОДНОЙ СРЕДЫ ОТ ЗАГРЯЗНЕНИЯ НЕФТЕПРОДУКТАМИ И БИОПРЕПАРАТ ДЛЯ ОЧИСТКИ ВОДНОЙ СРЕДЫ ОТ ЗАГРЯЗНЕНИЯ НЕФТЕПРОДУКТАМИ | 2003 |
|
RU2255052C2 |
БИОПРЕПАРАТ "АВАЛОН" ДЛЯ ОЧИСТКИ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ ОТ НЕФТИ И НЕФТЕПРОДУКТОВ, СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2000 |
|
RU2181701C2 |
СПОСОБ ПОЛУЧЕНИЯ БИОКАТАЛИЗАТОРА ДЛЯ СПИРТОВОГО БРОЖЕНИЯ | 2007 |
|
RU2361919C1 |
АЛЬГИНАТНЫЕ КАПСУЛЫ ДЛЯ ПРИМЕНЕНИЯ В ЛЕЧЕНИИ ОПУХОЛИ МОЗГА | 1999 |
|
RU2229287C2 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ НОСИТЕЛЯ ИММОБИЛИЗОВАННЫХ МИКРООРГАНИЗМОВ, РАСЩЕПЛЯЮЩИХ УГЛЕВОДОРОДЫ, И СПОСОБ ПОЛУЧЕНИЯ НОСИТЕЛЯ | 2005 |
|
RU2298033C2 |
RU 3211237 C1, 27.11.2007 | |||
СПОСОБ ИЗГОТОВЛЕНИЯ СУХОГО ПРЕПАРАТА НА ОСНОВЕ БИФИДО- И/ИЛИ ЛАКТОБАКТЕРИЙ И ПРЕПАРАТ, ИЗГОТОВЛЕННЫЙ ЭТИМ СПОСОБОМ | 2003 |
|
RU2262530C2 |
Поливинилхлоридная композиция | 1970 |
|
SU388588A1 |
DE 3432923 A1, 06.03.1986. |
Авторы
Даты
2011-06-27—Публикация
2009-07-31—Подача