Изобретение относится к гальванотехнике, в частности к нанесению хромовых покрытий.
Известен способ получения композиционного покрытия на основе хрома [1], которое получают электрохимическим осаждением из саморегулирующегося бариевого электролита, содержащего взвесь коллоидных кластерных частиц алмаза и при содержании в электролите хромового ангидрида и серной кислоты в количестве 200-225 и 0,9-1,0 соответственно.
Такой способ обеспечивает получение больших толщин покрытия с сохранением заданных свойств по всей его толщине, однако покрытие при этом обладает недостаточной микротвердостью.
Этот недостаток частично устранен в принятом за прототип способе получения композиционных металлоалмазных покрытий (см. патент РФ №2156838, МПК C25D 15/00, 2000 г.), согласно которому в электролит вводят очищенный ультрадисперсный алмазный порошок в количестве 2-20 г/л в виде электролитной суспензии с концентрацией ультрадисперсного алмазного порошка 8-10% с содержанием примесей не более 2% и удельной поверхностью 400-500 м2/г.
Недостатками этого способа являются высокая себестоимость электролита хромирования.
Задачами, на решение которых направлено предлагаемое изобретение, являются:
- снижение себестоимости наномодифицированных гальванических покрытий,
- получение хромовых покрытий с высокой микротвердостью,
- получение беспористых хромовых покрытий.
Технический результат заключается в повышении микротвердости хромового покрытия при снижении затрат на вводимые в электролит дисперсные материалы.
Указанный технический результат достигается тем, что согласно способу получения наномодифицированного гальванического хромового покрытия, включающий его гальваническое осаждение, в электролит вводят наноуглеродный материал с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и с содержанием структурированного углерода не менее 95%, в количестве 0,03-0,08 г/л, после чего электролит обрабатывают ультразвуком.
В качестве наноуглеродного материала в электролит вводят наноматериал «Таунит», очищенный от никелевого катализатора.
Обработку электролита ультразвуком проводят с частотой 22 кГц, амплитудой 80 мкм при интенсивности звука 786 Вт/см2.
Введение в электролит наноуглеродного материала с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм, длиной не менее 2 мкм и с содержанием структурированного углерода не менее 95%, в количестве 0,03-0,08 г/л с последующей обработкой электролита ультразвуком обеспечивает достижение микротвердости покрытия, превосходящей описанное в прототипе металалмазное покрытие, но при этом за счет введения наноматериала в гораздо меньшем количестве, чем алмазного порошка, достигается снижение себестоимости покрытия. Увеличение микротвердости покрытия происходит за счет совершенствования структуры хромового покрытия в результате воздействия на него наноуглеродных трубок в процессе осаждения. Одновременно увеличивается скорость осаждения и исключается пористость покрытия. Обработка электролита ультразвуком обеспечивает уменьшение размеров агломератов из углеродных наноматериалов и их более равномерное распределение в электролите.
Введение наноуглеродного материала в электролит наноматериала «Таунит», очищенного от никелевого катализатора, обеспечивает дополнительное снижение затрат на нанесение гальванических покрытий. В настоящее время описанный выше наноуглеродный материал получают методом каталитического пиролиза, причем в качестве катализатора в основном используются катализаторы на основе оксида никеля. После проведения синтеза наноуглеродного материала его очищают от катализатора промывкой в азотной кислоте, после чего материал промывают и сушат. Поскольку микропримеси никельсодержащего материала могут отрицательно влиять на процесс осаждения хромового покрытия, в настоящем изобретении предусмотрено применение очищенного от катализатора углеродного наноматериала, что позволяет массу дисперсного материала уменьшить не менее чем на 5-10% и снизить затраты на модификатор.
Проведение обработки электролита ультразвуком с частотой 22 кГц амплитудой 80 мкм, интенсивностью звука 786 Вт/см2 обеспечивает не только разрушение агломератов, но и обеспечивает равномерность распределения наноматериала в растворе, что обеспечивает получение беспористого покрытия.
Согласно изобретению поставленные задачи решают введением в состав электролита, содержащего хромовый ангидрид, серную кислоту и воду, дисперсного материала - наноуглеродного материала, зарегистрированного под торговой маркой «Таунит», при этом компоненты берут в следующем соотношении, г/л:
Хромовый ангидрид -150-300
Серная кислота - 1,5-3
Наноуглеродный материал («Таунит») - 0,03-0,08
При этом соотношение по массе хромового ангидрида и серной кислоты должно быть 100:1.
Наноуглеродный материал «Таунит» представляет собой длинные полые волокна, состоящие из графеновых слоев фуллереноподобной конструкции. Количество графеновых слоев не более 30, наружный диаметр волокон от 10 до 60 нм и длина не менее 2 мкм. При этом количество структурированного углерода в материале «Таунит» не менее 95%.
Согласно предлагаемому способу после введения в раствор электролита наноуглеродного материала «Таунит», электролит обрабатывают на ультразвуковой установке при частоте 22 кГц для уменьшения размеров агломератов из наноуглеродных трубок и их более равномерного распределения в электролите.
Подготовку поверхности деталей перед нанесением гальванического покрытия проводят стандартными способами с использованием известных растворов.
Для пояснения изобретения описан пример осуществления способа.
Пример.
Электрохимическое осаждение покрытия на предварительно подготовленную поверхность основы из материала сталь Ст3 проводят в электролите, содержащем (в г/л):
Хромовый ангидрид - 250
Серная кислота - 2,5
Углеродный наноматериал - 0,04
В качестве последнего вводят углеродный наноматериал «Таунит», изготовитель ООО «НаноТехЦентр» г.Тамбов, очищенный от никелевого катализатора, со следующими характеристиками:
После введения в раствор электролита наноуглеродного материала «Таунит» электролит обрабатывают на ультразвуковой установке с частотой 22 кГц, интенсивность ультразвуковой обработки: амплитуда 80 мкм, интенсивность звука 786 Вт/см2.
Процесс проводят при температуре 50°С. Функция изменения тока: 1,5 минуты осуществляют работу при токе обратной полярности (когда деталь является анодом), при этом анодная плотность тока 40 А/дм2, далее включают прямую полярность (когда деталь является катодом) и осуществляют толчок тока в течение одной минуты, катодная плотность тока при этом 150 А/дм2, далее в течение одной минуты осуществляют плавный переход до катодной плотности тока 70 А/дм2, после чего осуществляют нанесение покрытия в течение 60 минут при катодной плотности тока 70 А/дм2. Получают покрытие средней толщиной 21 мкм.
Микротвердость измеряли на микротвердомере ПМТ-3 при нагрузке 150 г.
Пористость покрытия исследовали в соответствии по ГОСТ 9.302-88.
Полученное покрытие беспористо и достаточно равномерно распределено по поверхности детали.
Микротвердость составляет 2032 кг/мм2 (19,9 ГПа), тогда как наилучшее значение этого показателя для хромалмазных покрытий, заявленных в прототипе, составляет 930 кг/мм2. Кроме того, наилучшие показатели хромалмазных покрытий получены при концентрации в электролите ультрадисперсного алмазного порошка 22 г/л, в то время как наилучшие результаты с добавлением наноуглеродного материала «Таунит» получены при его концентрации в электролите 0,04 г/л, т.е. меньшей в 550 раз. При соизмеримой себестоимости ультрадисперсного алмазного порошка и наноуглеродного материала «Таунит» в предлагаемом способе достигается существенное снижение себестоимости наномодифицированных гальванических покрытий.
Литература
1. Патент РФ №2031982, МПК7 C25D 15/00, 3/06, опубл. 1995 г.
2 Патент РФ №2156838, МПК7 C25D 15/00, опубл. 2000 г.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАНОМОДИФИЦИРОВАННОГО ГАЛЬВАНИЧЕСКОГО НИКЕЛЕВОГО ПОКРЫТИЯ | 2009 |
|
RU2411309C2 |
НАНОМОДИФИЦИРОВАННЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ НИКЕЛЕВОГО ПОКРЫТИЯ | 2009 |
|
RU2411308C2 |
ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ КОМПОЗИЦИОННОГО ХРОМОВОГО ПОКРЫТИЯ | 2009 |
|
RU2422563C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ ЭЛЕКТРОЛИТА ДЛЯ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ МЕТАЛЛОВ | 2011 |
|
RU2477341C2 |
Модифицированный наноуглеродом электролит анодирования детали из алюминия или его сплава | 2014 |
|
RU2607075C2 |
СПОСОБ КОРРЕКТИРОВКИ НАНОМОДИФИЦИРОВАННОГО ЭЛЕКТРОЛИТА | 2011 |
|
RU2482227C2 |
Способ изготовления алмазного инструмента на гальванической связке с повышенной износостойкостью, модифицированной углеродными нанотрубками | 2016 |
|
RU2660434C2 |
СПОСОБ ПОВЫШЕНИЯ ТЕПЛООТДАЧИ С ПОМОЩЬЮ МИКРОТУРБУЛИЗИРУЮЩИХ ЧАСТИЦ | 2012 |
|
RU2511806C1 |
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО НАНЕСЕНИЯ ХРОМ-АЛМАЗНЫХ ПОКРЫТИЙ | 1995 |
|
RU2096535C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОХИМИЧЕСКОГО ХРОМ-АЛМАЗНОГО ПОКРЫТИЯ | 2015 |
|
RU2585608C1 |
Изобретение относится к гальванотехнике, в частности к нанесению хромовых покрытий. Способ включает гальваническое осаждение хромового покрытия из электролита, при этом в электролит вводят наноуглеродный материал с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм и длиной волокон не менее 2 мкм при содержании структурированного углерода не менее 95%, в количестве 0,03-0,08 г/л, после чего электролит обрабатывают ультразвуком. Технический результат - повышение микротвердости хромового покрытия при снижении затрат на вводимые в электролит дисперсные материалы. 2 з.п. ф-лы, 1 табл.
1. Способ получения наномодифицированного гальванического хромового покрытия, включающий его гальваническое осаждение из электролита, отличающийся тем, что в электролит вводят наноуглеродный материал с числом графеновых слоев не более 30, наружным диаметром волокон от 10 до 60 нм и длиной волокон не менее 2 мкм при содержании структурированного углерода не менее 95%, в количестве 0,03-0,08 г/л, после чего электролит обрабатывают ультразвуком.
2. Способ по п.1, отличающийся тем, что в качестве наноуглеродного материала в электролит вводят наноматериал «Таунит», очищенный от никелевого катализатора.
3. Способ по п.1, отличающийся тем, что обработку электролита ультразвуком проводят с частотой 22 кГц, амплитудой 80 мкм при интенсивности 786 Вт/см2.
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МЕТАЛЛОАЛМАЗНЫХ ПОКРЫТИЙ | 1999 |
|
RU2156838C1 |
Мищенко С.В | |||
и др | |||
Углеродные наноматериалы | |||
Производство, свойства, применение | |||
- М.: Машиностроение, 2008, с.96 | |||
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ ХРОМА | 1992 |
|
RU2031982C1 |
JP 5106095 A, 27.04.1993. |
Авторы
Даты
2011-06-27—Публикация
2009-12-10—Подача