Способ подготовки сульфидных золотосодержащих концентратов к бактериальному окислению относится к гидрометаллургическим методам извлечения золота.
Известен способ подготовки сульфидных золотосодержащих концентратов к извлечению золота цианированием (пат. RU №1767900, опубл. 27.02.1995), основанный на бактериальном окислении пульпы, в которой жидкая фаза представлена биофильтратом с биомассой и серощелочным раствором с 10 г/л серы и рН 12,0.
В этом способе биофильтрат используется как переносчик микроорганизмов, а содержащееся в нем трехвалентное железо - как химический окислитель сульфидов. При этом карбонатная составляющая золотосодержащего концентрата уже нейтрализована серной кислотой, так как жизнедеятельность бактерий протекает в слабокислой среде при рН<2,0. Способ характеризуется повышенным содержанием серы в биокеке и увеличенным ~ в 2 раза расходом серной кислоты по сравнению с классическим методом биовыщелачивания [Полькин С.И., Адамов Э.В., Панин В.В. Технология бактериального выщелачивания цветных и редких металлов. - М.: Недра, 1972, с 287].
Наиболее близким по технологической сущности и достигаемому результату является «Способ бактериального окисления золотосодержащих сульфидных концентратов при получении золота» по пат. RU №2346063 от 10.02.2009, включающий предварительную обработку сульфидного концентрата кислотой при ее расходе 70% от количества, подаваемого на весь процесс бактериального окисления (10÷30 кг/т концентрата).
Однако, несмотря на то, что в данном способе повышается степень окисления сульфидов, расход серной кислоты и содержание элементарной серы в биокеке остаются высокими из-за протекания реакций:
Цианирование биокека с большим содержанием элементарной серы протекает с высоким расходом цианистого натрия (45÷55 кг/т биокека), что снижает технико-экономические показатели процесса извлечения золота.
Задачей изобретения является снижение расхода H2SO4 на процесс подготовки концентрата к биоокислению, повышении скорости фильтрации биопульпы и уменьшение концентрации элементарной серы в биокеке.
Достигается это тем, что в способе подготовки сульфидных золотосодержащих концентратов к бактериальному окислению при извлечении золота, для приготовления пульпы из концентрата и нейтрализацию его карбонатной составляющей, используют оборотную жидкую фазу биопульпы, содержащую ионы Fе3+, As5+и SO4 2 с добавкой гидрофилизатора на основе кремневой кислоты или желатины и нейтрализацию ведут до рН 2,6÷2,8 при температуре не более 40°С и продолжительности перемешивания 2÷4 часа.
Карбонатные составляющие сульфидного концентрата (СаСО3, MgCO3) нейтрализуются не серной кислотой, а ионами Fe3+, As5+и SO4 2-, которые при взаимодействии с карбонатами образуют нерастворимые соединения по реакциям:
Образующиеся гипс и гидроксид железа (III), имеющие соответственно отрицательный и положительный заряд поверхности [Айлер Р.К. Коллоидная химия кремнезема и силикатов. - М.: Химия, 1959.- 423 с.] притягиваются друг к другу и компенсируют поверхностный потенциал, что приводит к их коагуляции и образованию крупнокристаллического осадка 3СаSO4·2Fе(ОН)3. Это соединение в процессе бактериального окисления упрочняет свою кристаллическую структуру, не «схватывается» как гипс в порах фильтровальной ткани и скорость фильтрации биопульпы остается высокой.
Добавка в пульпу гидрофилизатора на основе кремневой кислоты или желатины снижает пенообразование в процессе нейтрализации карбонатов сульфидного концентрата, приводит к смачиванию раствором гидрофобных минералов антимонита (Sb2S3) и пирита (FeS2), что при бактериальном окислении облегчает доступ к ним микроорганизмов и реагентов - растворителей. Все это способствует ускорению процесса и повышению степени окисления MeS.
Способ осуществляется следующим образом.
Карбонатная составляющая сульфидного концентрата нейтрализуется ионами
Fе3+, As5+и SO4 2-, содержащимися в оборотной жидкой фазе биопульпы, до рН (2,6÷2,8) с добавкой гидрофилизатора на основе кремневой кислоты или желатины. Процесс осуществляется при температуре не более 40°С и продолжительности перемешивания (2÷4) часа.
Повышение температуры процесса ускоряет реакции (3, 4) и способствует формированию осадков кристаллической структуры, которые хорошо фильтруются [Зеликман А.Н., Вольдман Г.М., Беляевская Л.В. Теория гидрометаллургических процессов. - М.: Металлургия; 1975, 504 с.], однако, повышение температуры более 40°С приводит к гибели микроорганизмов. Поэтому процесс приготовления пульпы осуществляется при температуре не более 40°С.
Продолжительность перемешивания пульпы зависит от содержания карбонатов в концентрате, определяется по стабилизации рН и составляет (2÷4) часа. По окончании процесса приготовления пульпы жидкую фазу анализировали на содержание железа, мышьяка и по убыли масс этих элементов рассчитывали степень разложения карбонатов.
Подготовленная таким образом пульпа отправлялась на бактериальное окисление в периодическом режиме. Условия бактериального окисления: объем биопульпы 2 л, концентрация твердого 15%, количество инокулянта 0,5 л, концентрация железо - и сероокисляющих бактерий в инокулянте 1,6 г/л, дыхательная активность бактерий 50 мкл O2/мл·15 мин, температура процесса 38°С, питательные соли, г/л: 3 (NH4)2SO4; 0,5 К2НРO4·3Н2O; 0,5 MgSO4·7H2O; 0,1 К2SO4, (рНбиопульпы)нач. 2,0, расход воздуха 1 л/мин.
После завершения процесса бактериального окисления сульфидного концентрата пульпу фильтровали на воронке Бюхнера при вакууме ~20кПа через бумажный фильтр с синей лентой диаметром 90 мм и определяли скорость фильтрации.
Твердый продукт - биокек анализировали на содержание сульфидной и элементарной серы.
Для экспериментов использовали исходные материалы: сульфидный золотосодержащий концентрат состава, %: 24,69 Fe; 7,44 As; 4,91 Sb; 16,88 Ss; 1,78 SSO4; 1,71 S0; 4,5 Ca; 89 г/т Au и прочие - до 100. Минералогический состав концентрата, %: 23,12 Fe7S8; 16,06 FeAsS; 5,69 FeS2; 5,45 Sb2S3; 11,25 СаСО3, и жидкую фазу биопульпы, содержащую, г/л: 20 Fe3+; 4 As5+; 0,9 Sb3+, рН 2,0. Ионы представлены кислородными соединениями серы SO4 2-.
По предлагаемому способу было проведено две серии экспериментов. В первой серии варьировали отношение концентрат (Т): жидкая фаза биопульпы (Ж) при продолжительности перемешивания пульпы 3 часа и температуре 40°С. Влияние отношения Ж:Т на показатели процессов приготовления пульпы и бактериального окисления, концентрацию элементарной серы в биокеке представлены в таблице 1 и на чертеж. Из представленных результатов видно, что наилучшие результаты по степени разложения СаСО3, (ε разл. кривая 1, скорости фильтрации биопульпы υ, кривая 4, и содержание серы С, %, в биокеке кривая 2 наблюдаются при рН 2,6-2,8 кривая 3 при отношении Ж:Т=2:1 (чертеж). При получении исходной пульпы с рН 2,6÷2,8 для подкисления биопульпы до рН 2,0 потребуется не более 8÷10% серной кислоты от ее общего расхода, поэтому снижение расхода кислоты по сравнению с прототипом может составлять 60%.
При более высоких значениях рН>4÷6 и отношении Ж:Т<1,75 степень разложения СаСО3 становится менее 80%, что приведет при бактериальном окислении сульфидов к увеличению расхода серной кислоты для нейтрализации карбонатов и повышению концентрации элементарной серы в биокеке, образующейся по реакциям (1) и (2).
При рН<2,5 (Ж:Т>2,5) карбонаты разлагаются на 98-98,5%, но из-за неполного расходования ионов Fe3+в пульпе начинает протекать процесс окисления пирротина по реакции:
Образующаяся элементарная сера при бактериальном окислении практически не окисляется [Совмен В.К., Гуськов В.Н., Белый А.В. и др. Переработка золотоносных руд с применением бактериального окисления в условиях Крайнего Севера. - Новосибирск: Наука, 2007. - 144 с.] и при извлечении золота из биокека цианированием увеличивает расход дорогого и ядовитого реагента - цианида натрия.
S0 в биокеке, %
Во второй серии опытов изучено влияние добавок гидрофилизатора на ценообразование в процессе приготовления исходной пульпы и основные показатели бактериального окисления сульфидного концентрата (таблица 2).
Расход гидрофилизатора определяется опытным путем для каждого сульфидного концентрата и зависит от концентрации гидрофобных минералов Sb2S3 и FeS2. При переработке исследуемого концентрата расход кислого кремне-калиевого раствора СK+=13,4 г/л, рН 1,3) составил 2 мл/л биопульпы, а 1% - ного раствора желатины - 1 мл/л биопульпы.
Добавка гидрофилизаторов в пульпу не только снижает устойчивость пены, образующейся при нейтрализации карбонатов щелочноземельных металлов, но и увеличивает производительность реакторов на стадии бактериального окисления пульпы на 16% и 18% соответственно в присутствии желатины или кислого кремне - килиевого реагента. Степень окисления сульфидов металлов при этом возрастает на (2,4-3,0)%.
Таким образом, оптимальными параметрами процесса приготовления пульпы сульфидного золотосодержащего концентрата для бактериального окисления являются:
- нейтрализация карбонатной составляющей сульфидного концентрата ионами
Fe3+, As5+и SO4 2-, содержащимися в оборотной жидкой фазе биопульпы (биофильтрат или осветленный раствор), до рН (2,6÷2,8);
- добавка в пульпу гидрофилизатора на основе кремневой кислоты или желатины;
- температура процесса не более 40°С;
- продолжительность перемешивания пульпы (2÷4)часа;
Проведение процесса получения пульпы с соблюдением указанных параметров позволяет снизить расход серной кислоты на 60%, повысить производительность бактериального окисления на (16÷18)%, снизить содержание элементарной серы в биокеке в 1,5÷1,7 раза и увеличить скорость фильтрации биопульпы до 0,083÷0,086 т/м2·ч.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ БАКТЕРИАЛЬНОГО ОКИСЛЕНИЯ СУЛЬФИДНЫХ ЗОЛОТОНОСНЫХ КОНЦЕНТРАТОВ | 2010 |
|
RU2422544C1 |
СПОСОБ БАКТЕРИАЛЬНОГО ОКИСЛЕНИЯ СУЛЬФИДНЫХ ЗОЛОТОСОДЕРЖАЩИХ КОНЦЕНТРАТОВ ДЛЯ ИЗВЛЕЧЕНИЯ ЗОЛОТА | 2010 |
|
RU2425898C1 |
СПОСОБ БАКТЕРИАЛЬНОГО ОКИСЛЕНИЯ СУЛЬФИДНЫХ ЗОЛОТОСОДЕРЖАЩИХ КОНЦЕНТРАТОВ | 2010 |
|
RU2423537C1 |
СПОСОБ ПЕРЕРАБОТКИ УПОРНЫХ ПИРРОТИН-АРСЕНОПИРИТ-ПИРИТ-БЕРТЬЕРИТ-СТИБНИТОВЫХ ЗОЛОТОСОДЕРЖАЩИХ РУД (ВАРИАНТЫ) | 2023 |
|
RU2807003C1 |
СПОСОБ ПЕРЕРАБОТКИ УПОРНЫХ ПИРРОТИН-АРСЕНОПИРИТ-ПИРИТ-БЕРТЬЕРИТ-СТИБНИТОВЫХ ЗОЛОТОСОДЕРЖАЩИХ РУД (ВАРИАНТЫ) | 2023 |
|
RU2807008C1 |
СПОСОБ ГИДРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ КЕКА БАКТЕРИАЛЬНОГО ОКИСЛЕНИЯ | 2023 |
|
RU2806351C1 |
Способ переработки сульфидных золотосодержащих флотоконцентратов | 2016 |
|
RU2637203C1 |
КОМБИНИРОВАННЫЙ СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ УПОРНЫХ СУЛЬФИДНЫХ РУД | 2012 |
|
RU2502814C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ УПОРНЫХ СУЛЬФИДНЫХ РУД | 2005 |
|
RU2340690C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ УПОРНЫХ ЗОЛОТОСОДЕРЖАЩИХ РУД | 2005 |
|
RU2275437C1 |
Изобретение относится к гидрометаллургическим методам извлечения золота из сульфидных концентратов с предварительным бактериальным окислением. Способ подготовки сульфидных золотосодержащих концентратов к бактериальному окислению при извлечении золота включает приготовление пульпы из концентрата и нейтрализацию его карбонатной составляющей. Для приготовления пульпы и нейтрализации используют оборотную жидкую фазу биопульпы, содержащую ионы Fe3+, As5+и SO4 2-, с добавкой гидрофилизатора на основе кремневой кислоты или желатины. Нейтрализацию ведут до рН 2,6÷2,8 при температуре не более 40°С и продолжительности перемешивания 2÷4 часа. Техническим результатом является снижение расхода серной кислоты в процессе бактериального окисления на 60%, увеличение производительности на 16÷18%, повышение скорости фильтрации биопульпы до 0,083÷0,086 т/м3·ч и снижение содержания элементарной серы в биокеке в 1,5÷1,7 раза. 1 ил., 2 табл.
Способ подготовки сульфидных золотосодержащих концентратов к бактериальному окислению при извлечении золота, включающий приготовление пульпы из концентрата и нейтрализацию его карбонатной составляющей, отличающийся тем, что для приготовления пульпы из концентрата и нейтрализации его карбонатной составляющей используют оборотную жидкую фазу биопульпы, содержащую ионы Fe3+, As5+и SO4 2-, с добавкой гидрофилизатора на основе кремневой кислоты или желатины и нейтрализацию ведут до рН=2,6÷2,8 при температуре не более 40°С и продолжительности перемешивания 2÷4 ч.
СПОСОБ БАКТЕРИАЛЬНОГО ОКИСЛЕНИЯ ЗОЛОТОСОДЕРЖАЩИХ СУЛЬФИДНЫХ КОНЦЕНТРАТОВ ПРИ ПОЛУЧЕНИИ ЗОЛОТА | 2007 |
|
RU2346063C1 |
ИНТЕГРИРОВАННЫЙ СПОСОБ БИООКИСЛЕНИЯ ДЛЯ ВЫЩЕЛАЧИВАНИЯ СУЛЬФИДНЫХ РУД С ИСПОЛЬЗОВАНИЕМ РЕЗЕРВУАРНОГО/КУЧНОГО МЕТОДОВ | 1998 |
|
RU2188243C2 |
СПОСОБ БИООКИСЛЕНИЯ ОГНЕУПОРНЫХ СУЛЬФИДНЫХ РУД | 1994 |
|
RU2113522C1 |
US 6461577 A, 08.10.2002 | |||
US 5948375 A, 07.09.1999 | |||
JP 58009942 A, 20.01.1983 | |||
US 5332559 A, 26.07.1994 | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
2011-07-10—Публикация
2010-03-26—Подача