Предлагаемое изобретение относится к неразрушающему контролю материалов, в частности проводящей проволоки, и может быть использовано в лабораторных и цеховых условиях для контроля локальных неоднородностей структурной нестабильности и качества проволоки.
Известен способ неразрушающего контроля теплофизических свойств материалов, заключающийся в нагреве исследуемого образца точечным источником энергии и регистрации предельной избыточной температуры поверхностным термоприемником (авт. свид. СССР №813225, кл. G01N 25/12, 1981).
Недостатком этого способа является возможность исследовать дефекты, находящиеся на поверхности, т.к. дефекты внутри объема материала экранированы, а также значительная тепловая инерционность теплового контроля и, соответственно, низкая точность.
Известен способ тепловой дефектности, включающий нагрев изделия путем пропускания через него импульсов электрического тока и регистрацию температурного поля изделия, по которому судят о наличии дефектов (авт. свид. СССР №1377695, кл. G01N 25/18, 1986).
Недостатком этого способа является низкая достоверность обнаружения дефектов в проволоках из-за неустойчивости теплового рельефа при воспроизведении дефектной картины участка проволоки.
Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ дефектоскопии, включающий нагрев исследуемого изделия путем пропускания через него импульсов электрического тока и регистрацию температурного поля изделия, по которому судят о наличии дефектов путем определения скорости нарастания температуры проволоки (авт. свид. СССР №1770870 A1, кл. G01N 25/18, 1992).
Недостатком этого способа является значительная тепловая инерционность дефектоскопии из-за инерционности тепловых процессов. Техническим результатом предлагаемого изобретения является повышение быстродействия дефектоскопии.
Для достижения поставленной технической задачи участок системы механической протяжки проволоки разделен на четыре части (фиг.1) с электрическими сопротивлениями R1, R2, R3, R4, включенными в мостовую схему Уитсона (фиг.2).
При пропускании электрического тока через участок проволоки, где имеется дефект (поры, разрывы монокристалличности, нестабильность структуры и т.д.), наблюдается рост температуры из-за увеличения электрического сопротивления (джоулевые потери).
Использование большой скважности электрических импульсов обеспечивает низкую температуру, что исключает окисление проволоки, а также позволяет получить большую чувствительность мостовой схемы измерения.
На фиг.1 показана схема механической протяжки проволоки, где 1 и 2 - подающий и приемный валы осуществляют протяжку контролируемого провода с заданной скоростью, 3, 4, 5, 6 - фрикционы, обеспечивающие натяжение провода и надежные электрические контакты. Отрезки провода между этими фрикционами имеют электрические сопротивления R1, R2, R3, R4, включенные в мостовую схему, питаемую генератором импульсов 8. Выходное напряжение моста Uвых несет информацию о величине разбаланса моста (фиг.2), которое может быть через последовательно соединенный блок выделения модуля и триггер Шмитта подано на счетчик импульсов (условно не показано) для регистрации количества дефектов. Уровень срабатывания триггера Шмитта устанавливается исходя из допускаемого напряжения разбаланса моста.
Заявленное техническое решение позволяет с высокой точностью и быстродействием определять дефекты в проволоках из различных электропроводных материалов.
название | год | авторы | номер документа |
---|---|---|---|
Способ тепловой дефектоскопии | 1990 |
|
SU1770870A1 |
Способ изготовления стенда сухой протяжки для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне | 2017 |
|
RU2653138C1 |
УЛЬТРАЗВУКОВОЙ СПОСОБ КОНТРОЛЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ | 2002 |
|
RU2248566C2 |
Способ контроля накопления усталостных повреждений проводов воздушной линии электропередачи | 2021 |
|
RU2780947C1 |
СПОСОБ РАДИАЦИОННОЙ ДЕФЕКТОСКОПИИ ПОЛЫХ ТЕЛ | 2010 |
|
RU2436075C1 |
СПОСОБ ТЕПЛОВОГО КОНТРОЛЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ И ДЕФЕКТОВ КОНСТРУКЦИЙ | 2007 |
|
RU2383009C2 |
УДАРНО-АКУСТИЧЕСКИЙ ДЕФЕКТОСКОП | 1998 |
|
RU2167419C2 |
Способ диагностического контроля тензорезистивных полупроводниковых интегральных преобразователей | 1986 |
|
SU1430897A1 |
СПОСОБ ЭЛЕКТРОСИЛОВОЙ ТЕРМОГРАФИИ ПРОСТРАНСТВЕННЫХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2018 |
|
RU2690033C1 |
Способ обнаружения усталостных поверхностных трещин в электропроводящем изделии | 2016 |
|
RU2638395C1 |
Предлагаемое изобретение относится к неразрушающему контролю материалов, в частности электропроводящей проволоки. Электрические импульсы высокой скважности пропускаются через контролирующий провод в определенных точках системы механической протяжки провода, образующего электрическую мостовую схему, а о наличии дефектов судят по величине разбаланса моста. Изобретение обеспечивает повышение быстродействия дефектоскопии. 2 ил.
Способ дефектоскопии, заключающийся в пропускании электрических импульсов высокой скважности через контролируемый провод, отличающийся тем, что подача электрических импульсов осуществляется в определенные точки системы механической протяжки провода, образующего электрическую мостовую схему, а о наличии дефектов судят по величине разбаланса моста.
Способ тепловой дефектоскопии | 1990 |
|
SU1770870A1 |
Способ контроля дефектов протяженных изделий | 1979 |
|
SU868543A1 |
УСТРОЙСТВО для КОНТРОЛЯ СОПРОТИВЛЕНИЯ изоляцииРАБОЧИХ жил | 0 |
|
SU194181A1 |
JP 55022106 A, 16.02.1980. |
Авторы
Даты
2011-07-20—Публикация
2010-04-14—Подача