СПОСОБ ПРОИЗВОДСТВА ШТРИПСА ДЛЯ ТРУБ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ Российский патент 2011 года по МПК C21D8/02 C22C38/44 C22C38/48 C21D9/46 

Описание патента на изобретение RU2426800C2

Изобретение относится к металлургии, конкретнее к производству штрипсовой стали для магистральных подводных трубопроводов диаметром до 1420 мм, толщиной 24-40 мм.

Известен способ производства штрипсовой стали категории Х70 с использованием контролируемой прокатки из низколегированной стали повышенной прочности марки 10Г2ФБ, отвечающей требованиям к стали данной категории прочности по стандарту API 5L в толщинах до 21,6 мм при температуре испытания падающим грузом -20°С с гарантированным содержанием волокнистой составляющей в изломе не менее 90%, при отношении σТВ≤0,9, содержащей, мас.%: углерод - 0,08-0,11, марганец - 1,55-1,75, кремний - 0,15-0,35, хром - не более 0,3, никель - не более 0,3, медь - не более 0,3, ванадий - 0,06-0,08, ниобий - 0,04-0,06, титан - 0,010-0,25, алюминий 0,015-0,06, фосфор - не более 0,020, сера - не более 0,005, железо - остальное.

Основным недостатком этой марки является отсутствие возможности изготовления в толщинах более 21,6 мм, что обусловливается образованием неоднородной структуры по толщине проката, определяющей снижение хладостойкости и изотропности механических свойств и, как следствие, снижение эксплуатационной надежности.

Наиболее близким по технологии изготовления является способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров следующего химического состава (мас.%) (RU №2270873, C21D 8/02, опубл. 27.02.2006 г. - прототип):

Углерод 0,05-0,09 Марганец 1,25-1,60 Хром 0,01-0,1 Кремний 0,15-0,30 Никель 0,30-0,60 Молибден 0,10-0,25 Ванадий 0,03-0,10 Алюминий 0,02-0,05 Ниобий 0,01-0,06 Медь 0,20-0,40 Железо остальное.

При этом проводят предварительную деформацию при температуре 950-850°С с суммарными обжатиями 50-60%, затем осуществляют охлаждение полученной заготовки до 820-760°С, окончательную деформацию с суммарной степенью обжатий 65-75% проводят при температуре 770-740°С, ускоренное охлаждение листового проката проводят в установке контролируемого охлаждения до температур 530-350°С со скоростью 35-55°С/с, далее замедленно охлаждают в кессоне до температуры не выше 150°С и затем на воздухе.

Известная сталь обеспечивает высокую технологичность изготовления труб, определяемую соотношением <σТВ≤0,90.

Недостатками прототипа являются пониженные свариваемость, трещиностойкость, хладостойкость, прочностные свойства и сопротивляемость хрупким разрушениям стали при низких температурах до -60°С для листов толщиной до 40 мм.

Техническим результатом изобретения является разработка способа производства штрипсовой стали в толщинах 24-40 мм и шириной до 4500, обеспечивающего лучшую свариваемость, определяемую Сэкв≤0,40% и трещиностойкость, определяемую Pcm≤0,21, более высокие прочностные свойства и сопротивляемость хрупким разрушениям при температурах до -20°С для листов толщиной до 40 мм, определяемую количеством волокнистой составляющей (ИПГ) при сохранении высокой технологичности, определяемой соотношением σТВ≤0,90.

Технический результат достигается тем, что в способе производства штрипса для труб магистральных трубопроводов, включающем получение заготовки из стали, нагрев до температуры выше Ас3, дробную деформацию и ступенчатое охлаждение готового штрипса в установке контролируемого ускоренного охлаждения (УКО) до температуры 550-400°С с последующим охлаждением в кессоне до 150°С и далее на воздухе, согласно изобретению заготовку получают из стали со следующим соотношением элементов, мас.%: углерод - 0,03-0,10, марганец - 1,20-1,85, кремний - 0,15-0,35, никель - 0,10-0,30, алюминий - 0,02-0,06, молибден - 0,01-0,3, ниобий - 0,03-0,06, ванадий - 0,01-0,03, титан - 0,001-0,020, сера - 0,001-0,003, фосфор - 0,002-0,010, железо - остальное, при этом величина углеродного эквивалента определяется как:

а коэффициент трещиностойкости при сварке

Перед прокаткой металл подвергают аустенизации при температуре 1150-1200°С в течение 7-8 часов, затем проводят предварительную деформацию с суммарной степенью обжатия 58-65% с регламентированными обжатиями 14-20% при температуре 940-990°С, далее осуществляют охлаждение полученной заготовки на 70-100°С со скоростью 4-12°С/с и последующую выдержку 3-5 с на мм сечения листа на воздухе, окончательную деформацию проводят при температуре 830-750°С с суммарной степенью обжатий не менее 43% и не менее 12% за проход.

Основными факторами повышения предела текучести являются твердорастворное, дислокационное, субструктурное и дисперсионное упрочнения.

Повышение предела текучести стали обычно приводит к увеличению склонности к хрупким разрушениям. Единственным механизмом, который одновременно с приростом предела текучести вызывает повышение хладостойкости, является измельчение действительного зерна. Измельчение структуры достигается применением легирования титаном, ванадием и ниобием, которые, образуя мелкодисперсные карбиды, препятствуют росту зерна аустенита при нагреве и оказывают тормозящее действие на собирательную рекристаллизацию при высокотемпературной стадии прокатки.

Главной отличительной особенностью технологии является регламентирование первой стадии прокатки как по величине обжатий, так и по температуре и способу промежуточного охлаждения подката. Обжатия с деформацией 14-20% позволяют в процессе динамической рекристаллизации сформировать мелкодисперсную карбидную фазу, предотвращающую прохождение собирательной рекристаллизации, и обеспечить измельчение структуры по всей толщине. Охлаждение подката с регламентированной скоростью 4-12°С/с позволяет избежать изотермической паузы в интервале температур прохождения собирательной рекристаллизации, выдержка на воздухе 3-5 с на мм сечения листа дается для выравнивая температуры по сечению.

Применение термомеханической обработки с окончанием прокатки при температурах 830-750°С обеспечивает формирование мелкозернистой структуры с развитой субструктурой и равномерно распределенной мелкодисперсной карбидной фазой.

Ускоренное охлаждение листового проката в установке контролируемого охлаждения (УКО) со скоростью не менее 40°С/с до 550-400°С способствует образованию мелкозернистой структуры, состоящей из полигонального и фрагментированного феррита и бейнита. Последующее замедленное охлаждение в кессоне до 150°С обусловливает снятие термических напряжений.

Использование микролегирования обеспечивает формирование мелкозернистой структуры по всей толщине проката. Содержание никеля не более 0,3 мас.% и марганца не более 1,85 мас.% определяет широкий интервал скоростей охлаждения для получения заданной феррито-бейнитной структуры по всей толщине проката.

Регламентирование содержания примесных элементов, особенно серы, обеспечивает высокую сопротивляемость стали динамическим нагрузкам при отрицательных температурах (ИПГ при минус 20).

Испытания листового проката, изготовленного по указанной технологии, показали, что предлагаемые режимы для заданного химического состава обеспечивают наряду с требуемой прочностью содержание волокнистой составляющей в изломе проб после испытания DWTT в толщинах до 40 мм.

Пример:

Сталь была выплавлена в кислородном конвертере и после внепечного рафинирования разлита в непрерывнолитые слябы сечением 250×1600 мм.

Химический состав выплавленной стали следующий, мас.%: углерод - 0,06, кремний - 0,27, марганец - 1,57, никель - 0,17, алюминий - 0,04, молибден - 0,09, титан - 0,015, сера - 0,002, фосфор - 0,009, ниобий - 0,051, ванадий - 0,030, железо - остальное, Сэкв=0,36, Pcm=0,16.

Согласно указанному способу заготовки подвергали аустенизации при температуре 1170°С в течение 7 часов.

Прокатку на листы толщиной 40 мм производили на одноклетьевом стане в реверсивном режиме. Предварительную деформацию проводили со строго регламентированными обжатиями 14-15-14-17-16-20% в диапазоне температур 940-990°С. Далее осуществляли охлаждение заготовки на 70°С до 900°С со скоростью 6°С/с и последующую выдержку в течение 6 минут на воздухе. Окончательную деформацию производили при температуре 830°С с суммарными обжатиями 46%, но не менее 12% за проход. После окончания деформации листы охлаждали в установке контролируемого охлаждения до температуры 530°С со скоростью 53°С/с. Замедленное охлаждение проводили в кессоне до температуры 150°С, окончательное охлаждение - на воздухе до температуры окружающей среды.

Механические свойства определяли на продольных и поперечных образцах. Испытания на статическое растяжение проводили на полнотолщинных образцах, а на ударный изгиб на образцах с V-образным надрезом (тип 11, ГОСТ 9454) при температурах -20 и -60°С. Испытание ИПГ проводили на полнотолщинных образцах в соответствии с API 5L 3.

Механические свойства прокатанных листов приведены в таблице 1. Определено содержание волокнистой составляющей в изломе пробы ИПГ, составившее 97% и 100%.

Похожие патенты RU2426800C2

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ШТРИПСА ДЛЯ ТРУБ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2008
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Орлов Виктор Валерьевич
  • Малахов Николай Викторович
  • Шахпазов Евгений Христофорович
  • Морозов Юрий Дмитриевич
  • Настич Сергей Юрьевич
  • Матросов Максим Юрьевич
RU2383633C1
Способ производства штрипсового проката толщиной 10-40 мм для изготовления прямошовных труб большого диаметра, эксплуатируемых в условиях экстремально низких температур 2021
  • Сахаров Максим Сергеевич
  • Мишнев Петр Александрович
  • Михеев Вячеслав Викторович
  • Липин Виталий Климович
  • Гелевер Дмитрий Георгиевич
  • Антипов Игорь Владимирович
RU2760014C1
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОПРОЧНОГО ШТРИПСА ДЛЯ ТРУБ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ 2011
  • Галкин Виталий Владимирович
  • Денисов Сергей Владимирович
  • Стеканов Павел Александрович
  • Малахов Николай Викторович
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Орлов Виктор Валерьевич
  • Сыч Ольга Васильевна
  • Милейковский Андрей Борисович
RU2465346C1
СПОСОБ ПРОИЗВОДСТВА ХЛАДОСТОЙКОГО ЛИСТОВОГО ПРОКАТА 2008
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Хлусова Елена Игоревна
  • Мальцева Людмила Ивановна
  • Орлов Виктор Валерьевич
  • Сувориков Виктор Александрович
  • Малахов Николай Викторович
  • Милейковский Андрей Борисович
  • Фомин Сергей Евгеньевич
RU2374333C1
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВОЙ СТАЛИ ДЛЯ ТРУБ ПОДВОДНЫХ МОРСКИХ ГАЗОПРОВОДОВ ВЫСОКИХ ПАРАМЕТРОВ 2005
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Легостаев Юрий Леонидович
  • Владимиров Николай Федорович
  • Малахов Николай Викторович
  • Мирошников Борис Леонидович
  • Степанов Александр Александрович
  • Ордин Владимир Георгиевич
  • Голованов Александр Васильевич
  • Северинец Игорь Юрьевич
  • Бойченко Виктор Степанович
  • Лесина Ольга Анатольевна
  • Синельников Вячеслав Алексеевич
  • Морозов Юрий Дмитриевич
  • Эфрон Леонид Иосифович
RU2270873C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ПРОКАТА 2011
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Голованов Александр Васильевич
  • Корчагин Андрей Михайлович
  • Клюквин Михаил Борисович
  • Тихонов Сергей Михайлович
  • Сосин Сергей Владимирович
  • Махов Геннадий Александрович
  • Сахаров Максим Сергеевич
RU2466193C1
Горячекатаный лист из низколегированной стали толщиной от 15 до 165 мм и способ его получения 2016
  • Михеев Вячеслав Викторович
  • Ваурин Виталий Васильевич
  • Сахаров Максим Сергеевич
  • Смелов Антон Игоревич
  • Корчагин Андрей Михайлович
  • Сычев Олег Николаевич
RU2638479C1
СПОСОБ ПРОИЗВОДСТВА ХЛАДОСТОЙКОГО ЛИСТОВОГО ПРОКАТА (ВАРИАНТЫ) 2006
  • Горынин Игорь Васильевич
  • Малышевский Виктор Андреевич
  • Малахов Николай Викторович
  • Хлусова Елена Игоревна
  • Орлов Виктор Валерьевич
  • Суровова Людмила Тимофеевна
  • Ефимов Семен Викторович
  • Немтинов Александр Анатольевич
  • Мальцев Андрей Борисович
  • Голованов Александр Васильевич
  • Подтелков Владимир Владимирович
RU2345149C2
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ПРОКАТА 2009
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Емельянов Александр Матвеевич
  • Голованов Александр Васильевич
  • Корчагин Андрей Михайлович
  • Клюквин Михаил Борисович
  • Тихонов Сергей Михайлович
  • Румянцев Александр Васильевич
  • Сосин Сергей Владимирович
  • Сахаров Максим Сергеевич
RU2414515C1
СПОСОБ ПРОИЗВОДСТВА ХЛАДОСТОЙКОГО ЛИСТОВОГО ПРОКАТА 2010
  • Галкин Виталий Владимирович
  • Денисов Сергей Владимирович
  • Стеканов Павел Александрович
  • Орыщенко Алексей Сергеевич
  • Хлусова Елена Игоревна
  • Орлов Виктор Валерьевич
  • Сувориков Виктор Александрович
RU2432403C1

Реферат патента 2011 года СПОСОБ ПРОИЗВОДСТВА ШТРИПСА ДЛЯ ТРУБ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ

Изобретение относится к области металлургии, конкретнее к производству штрипса для магистральных подводных трубопроводов диаметром до 1420 мм, класса прочности Х70, толщиной до 40 мм. Для получения высоких прочностных свойств и сопротивляемости хрупким разрушениям при температурах -20°С осуществляют выплавку стали определенного химического состава, разливку стали в заготовки, нагрев заготовки до температуры 1150-1200°С в течение 7-8 час, предварительную деформацию с суммарной степенью обжатия 58-65% с регламентированными обжатиями 14-20% при температуре 940-990°С, охлаждение полученной заготовки на 70-100°С со скоростью 4-12°С/с, выдержку 3-5 с на мм сечения заготовки на воздухе, окончательную деформацию при температуре 830-750°С с суммарной степенью обжатий не менее 43% и не менее 12% за проход, ускоренное охлаждение до температур 550-400°С, далее замедленное охлаждение штрипса в кессоне до температуры не выше 150°С, затем на воздухе. 1 табл.

Формула изобретения RU 2 426 800 C2

Способ производства штрипса для труб магистральных трубопроводов толщиной 24-40 мм, включающий получение заготовки из стали, нагрев заготовки выше Ас3, дробную деформацию и ступенчатое охлаждение готового штрипса в установке контролируемого ускоренного охлаждения (УКО) до температуры 550-400°С с последующим охлаждением в кессоне до 150°С и далее на воздухе, отличающийся тем, что заготовку получают из стали со следующим соотношением элементов, мас.%:
углерод 0,03-0,10 марганец 1,20-1,85 кремний 0,15-0,35 никель 0,10-0,30 алюминий 0,02-0,06 молибден 0,01-0,3 ниобий 0,03-0,06 ванадий 0,01-0,03 титан 0,001-0,020 сера 0,001-0,003 фосфор 0,002-0,010 железо остальное


при этом углеродный эквивалент Сэкв.≤0,40 мас.%, коэффициент трещиностойкости Pcm≤0,21 мас.%, перед деформацией заготовку нагревают до температуры 1150-1200°С в течение 7-8 ч, затем проводят предварительную деформацию с суммарной степенью обжатия 58-65% с регламентированными обжатиями 14-20% при температуре 940-990°С, далее осуществляют охлаждение полученной заготовки на 70-100°С со скоростью 4-12°С/с и последующую выдержку 3-5 с на мм сечения заготовки на воздухе, окончательную деформацию проводят при температуре 830-750°С с суммарной степенью обжатий не менее 43% и не менее 12% за проход.

Документы, цитированные в отчете о поиске Патент 2011 года RU2426800C2

СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВОЙ СТАЛИ ДЛЯ ТРУБ ПОДВОДНЫХ МОРСКИХ ГАЗОПРОВОДОВ ВЫСОКИХ ПАРАМЕТРОВ 2005
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Легостаев Юрий Леонидович
  • Владимиров Николай Федорович
  • Малахов Николай Викторович
  • Мирошников Борис Леонидович
  • Степанов Александр Александрович
  • Ордин Владимир Георгиевич
  • Голованов Александр Васильевич
  • Северинец Игорь Юрьевич
  • Бойченко Виктор Степанович
  • Лесина Ольга Анатольевна
  • Синельников Вячеслав Алексеевич
  • Морозов Юрий Дмитриевич
  • Эфрон Леонид Иосифович
RU2270873C1
СПОСОБ ПРОИЗВОДСТВА ХЛАДОСТОЙКОГО ЛИСТОВОГО ПРОКАТА (ВАРИАНТЫ) 2006
  • Горынин Игорь Васильевич
  • Малышевский Виктор Андреевич
  • Малахов Николай Викторович
  • Хлусова Елена Игоревна
  • Орлов Виктор Валерьевич
  • Суровова Людмила Тимофеевна
  • Ефимов Семен Викторович
  • Немтинов Александр Анатольевич
  • Мальцев Андрей Борисович
  • Голованов Александр Васильевич
  • Подтелков Владимир Владимирович
RU2345149C2
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ПРОКАТА 2006
  • Попова Татьяна Николаевна
  • Голованов Александр Васильевич
  • Немтинов Александр Анатольевич
  • Гейер Владимир Васильевич
  • Краев Александр Дмитриевич
  • Рагуцкий Григорий Анатольевич
  • Зиборов Александр Васильевич
  • Балдаев Борис Яковлевич
  • Морозов Юрий Дмитриевич
  • Марченко Валерий Николаевич
  • Пименова Татьяна Валериевна
  • Трайно Александр Иванович
RU2318027C1
ХЛАДОСТОЙКАЯ СТАЛЬ ПОВЫШЕННОЙ ПРОЧНОСТИ 2004
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Владимиров Николай Федорович
  • Семичева Тамара Григорьевна
  • Хлусова Елена Игоревна
  • Зыков Вячеслав Владимирович
  • Гейер Владимир Васильевич
  • Ордин Владимир Георгиевич
  • Середа Ирина Ричардовна
  • Голованов Александр Васильевич
  • Бойченко Виктор Степанович
  • Лесина Ольга Анатольевна
  • Арианов Сергей Владимирович
RU2269587C1
DE 4015249 A, 28.02.1991
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1

RU 2 426 800 C2

Авторы

Горынин Игорь Васильевич

Рыбин Валерий Васильевич

Малышевский Виктор Андреевич

Хлусова Елена Игоревна

Орлов Виктор Валерьевич

Ермакова Светлана Владимировна

Малахов Николай Викторович

Шахпазов Евгений Христофорович

Морозов Юрий Дмитриевич

Настич Сергей Юрьевич

Матросов Максим Юрьевич

Даты

2011-08-20Публикация

2008-12-12Подача