СПОСОБ НАНЕСЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ ГАЗОТЕРМИЧЕСКИМ НАПЫЛЕНИЕМ Российский патент 2011 года по МПК C23C4/12 

Описание патента на изобретение RU2432416C1

Изобретение относится к технологии получения покрытий на поверхности деталей, в частности к способам нанесения защитного покрытия из порошковых материалов в расплавленном состоянии газотермическим напылением на поверхности деталей, и может быть использовано в авиадвигателестроении, энергетике, машиностроении при изготовлении и ремонте деталей, например корпусных деталей, валов, рабочих и направляющих лопаток газовых турбин.

Известен способ нанесения защитного покрытия газотермическим напылением, включающий непрерывную подачу напыляемого материала в виде порошка на поверхность детали при помощи газопламенной горелки. Порошок, поступая в пламя горючей смеси, состоящей из газообразного топлива и кислорода, разгоняется и нагревается потоком газа, при этом расплавленные частицы порошка, попадая на поверхность детали, образуют защитное покрытие (см. Поляк М.С. Технология упрочнения. В 2 т. Машиностроение, 1995. - T.1, с.87-92).

Недостатками данного способа являются:

- низкое качество получаемого защитного покрытия из-за высокой пористости, окисленности и низкой прочности сцепления (адгезионной прочности) защитного покрытия с поверхностью детали (основой), так как скорость напылительного потока невысока и расплавленные частицы успевают окислиться;

- низкая гомогенность (однородность) структуры покрытия из-за неравномерного распределения порошка по поперечному сечению напылительного потока.

Технический результат заявленного способа - повышение качества покрытия.

Указанный технический результат достигается тем, что в способе нанесения защитного покрытия, включающем напыление материала в виде порошка на поверхность детали в смеси газообразного топлива и кислорода при помощи газопламенной горелки, согласно изобретению напыление осуществляют со скоростью перемещения горелки относительно поверхности детали 110-130 м/мин, дистанции напыления 200-300 мм от поверхности детали, расходах кислорода 210-900 л/мин и газообразного топлива 50-640 л/мин.

Указанные количественные признаки являются существенными.

При скорости перемещения горелки меньше 110 м/мин происходит перегрев покрытия и поверхности детали, что приводит к отслоению покрытия и повреждению детали.

При скорости перемещения горелки больше 130 м/мин происходит неравномерное напыление покрытия по толщине («пятнами»).

При дистанции напыления меньше 200 мм происходит перегрев покрытия и поверхности детали, что приводит к отслоению покрытия и повреждению детали.

При дистанции напыления больше 300 мм происходит «недогрев» покрытия, что приводит к низкой адгезионной прочности покрытия с поверхностью детали.

При расходе кислорода меньше 210 л/мин происходит «недогрев» покрытия и распыляемого материала, что приводит к получению пористой некачественной структуры покрытия с большим содержанием нерасплавленных частиц распыляемого материала и низкому коэффициенту использования (КИМ) распыляемого материала.

При расходе кислорода больше 900 л/мин также образуется некачественная структура покрытия с большим содержанием окислов, а также низкий КИМ распыляемого материала.

При расходе горючего топлива меньше 50 л/мин не обеспечивается достаточный прогрев распыляемого материала и покрытия, что приводит к низкому КИМ распыляемого материала и низкой адгезионной прочности покрытия к поверхности детали.

При расходе горючего топлива больше 640 л/мин не обеспечивается высокая скорость частиц распыляемого материала, а получаемое покрытие имеет низкую адгезионную прочность покрытия к поверхности детали.

Таким образом, при выходе за указанные диапазоны качество покрытия снижается, что приводит к снижению срока службы покрытия и снижению эксплуатационных характеристик, т.е. регулировкой расхода газообразного топлива и кислорода, выбором оптимальной дистанции напыления и скорости перемещения горелки (м/мин) можно повысить качество покрытия, а именно повысить стойкость покрытий, например, на основе никеля NiCrAlY и NiCoCrAl(Ta)Y, при работе в условиях высокотемпературного окисления, термоциклирования и горячей коррозии.

В качестве топлива могут быть использованы горючие газы: водород, метан, пропан и др.

Способ реализуется следующим образом.

Реализация способа рассмотрена на примере нанесения защитного покрытия на перо рабочей лопатки второй ступени из сплава ЧС88У-ВИ парогазовой турбины ПГУ-60С.

Предварительно производят подготовку поверхности лопатки: обезжириванием ацетоном, пескоструйной обработкой электрокорундом марки с зерном F36 (400-630 мкм) при давлении сжатого воздуха до 6 кгс/см2 и затем обдувкой чистым сжатым воздухом.

Затем проводят напыление горелкой, снабженной на конце водоохлаждаемым сверхзвуковым соплом Лаваля. Горелку закрепляют на «руке» робота «KUKA» мод. KR15. Перемещение «руки» робота выполняется по заранее составленной программе.

В качестве горючей смеси используют кислород с природным газом метаном в соотношении O2/CH4=1,18-1,39. Расходы газов: метана 390 л/мин, кислорода 460 л/мин. Дистанция напыления 220 мм. Расход азота транспортировки порошка 15 л/мин. Расход порошка 60-80 г/мин. Скорость перемещения горелки 125 м/мин. Лопатку охлаждают чистым сжатым воздухом.

Порошок, поступая в пламя горючей смеси, разгоняется и нагревается потоком газа, при этом расплавленные частицы порошка, попадая на поверхность детали, образуют защитное покрытие.

После нанесения покрытия лопатки проходят отжиг в вакуумной печи при 1000°С в течение 2 часов для снятия напряжений и повышения адгезии покрытия формированием диффузионной зоны по границе покрытие - основной металл.

Данным способом на лопатке получено покрытие CoNiCrAlTaY толщиной 0,08-0,12 мм из порошка Ni23Co20Cr8, 5AI4Ta0, 6Y марки AMDRY 997 с грануляцией частиц <37 мкм.

Похожие патенты RU2432416C1

название год авторы номер документа
СПОСОБ ГАЗОПЛАМЕННОГО НАПЫЛЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВЫХ МАТЕРИАЛОВ 2003
  • Гедзь Андрей Джонович
  • Коберниченко Анатолий Борисович
  • Ухалин Александр Сергеевич
  • Ефремов Владимир Владимирович
  • Шульчевский Юрий Геннадьевич
RU2312165C2
ГОРЕЛКА ДЛЯ ГАЗОПЛАМЕННОГО НАПЫЛЕНИЯ 1992
  • Говорин Евгений Владимирович
RU2031739C1
Способ получения износостойкого композиционного покрытия 1990
  • Черновол Михаил Иванович
  • Гелейшвили Тенгиз Павлович
  • Лопата Лариса Анатольевна
  • Окросцваридзе Зураб Шалвович
  • Белоцерковский Марат Артемович
SU1759559A1
Способ напыления защитных покрытий для интерметаллического сплава на основе гамма-алюминида титана 2019
  • Задорожный Владислав Юрьевич
  • Мазилин Иван Владимирович
  • Зайцев Николай Григорьевич
  • Задорожный Михаил Юрьевич
  • Сударчиков Владимир Александрович
  • Артамонов Антон Вячеславович
  • Степашкин Андрей Александрович
  • Калошкин Сергей Дмитриевич
RU2716570C1
Способ газопламенного напыления порошковых материалов с получением покрытия на никелевой основе посредством распылителя 2021
  • Синолицын Эммануил Константинович
  • Сиденков Владимир Александрович
  • Бацемакин Максим Юрьевич
RU2775984C1
ГОРЕЛКА ДЛЯ ГАЗОПЛАМЕННОГО НАПЫЛЕНИЯ 1992
  • Говорин Евгений Владимирович
RU2031740C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННОГО ПОКРЫТИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2013
  • Боташев Анвар Юсуфович
  • Бисилов Назим Урасланович
  • Боташева Халима Юсуфовна
  • Малсугенов Роман Сергеевич
RU2575667C2
Способ нанесения теплозащитного покрытия на детали газотурбинной установки 2023
  • Дорофеев Антон Сергеевич
  • Тарасов Дмитрий Сергеевич
  • Фокин Николай Иванович
  • Ивановский Александр Александрович
  • Гуляев Игорь Павлович
  • Ковалев Олег Борисович
  • Кузьмин Виктор Иванович
  • Сергачев Дмитрий Викторович
RU2813539C1
СПОСОБ ГАЗОПЛАМЕННОГО НАПЫЛЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ 1999
  • Синолицын Э.К.
  • Приходько В.М.
  • Рубанов В.В.
  • Шевченко А.И.
  • Шевченко А.А.
  • Чуларис А.А.
RU2169792C2
СПОСОБ ФОРМИРОВАНИЯ ИЗНОСОСТОЙКОГО ПОКРЫТИЯ 2002
  • Витязь Петр Александрович
  • Белоцерковский Марат Артемович
  • Басинюк Владимир Леонидович
  • Мардосевич Елена Ивановна
RU2234382C2

Реферат патента 2011 года СПОСОБ НАНЕСЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ ГАЗОТЕРМИЧЕСКИМ НАПЫЛЕНИЕМ

Изобретение относится к технологии получения покрытий на поверхности деталей, в частности к способам нанесения защитных покрытий из порошковых материалов газотермическим напылением на поверхности деталей, и может быть использовано в авиадвигателестроении, энергетике, машиностроении при изготовлении и ремонте деталей, например корпусных деталей, валов, рабочих и направляющих лопаток газовых турбин. Способ включает напыление материала в виде порошка на поверхность детали в смеси газообразного топлива и кислорода при помощи газопламенной горелки. Напыление осуществляют со скоростью перемещения горелки относительно поверхности детали 110-130 м/мин при дистанции напыления 200-300 мм от поверхности детали при скорости расхода кислорода 210-900 л/мин и газообразного топлива 50-640 л/мин. Технический результат - повышение качества покрытия.

Формула изобретения RU 2 432 416 C1

Способ нанесения защитного покрытия газотермическим напылением, включающий напыление материала в виде порошка на поверхность детали в смеси газообразного топлива и кислорода при помощи газопламенной горелки, отличающийся тем, что напыление осуществляют со скоростью перемещения горелки относительно поверхности детали 110-130 м/мин при дистанции напыления 200-300 мм от поверхности детали, при скорости расхода кислорода 210-900 л/мин и газообразного топлива 50-640 л/мин.

Документы, цитированные в отчете о поиске Патент 2011 года RU2432416C1

ПОЛЯК М.С
Технология упрочнения
- М.: Машиностроение, 1995
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
ПОРОШКООБРАЗНЫЙ МАТЕРИАЛ ДЛЯ НАПЫЛЕНИЯ ИЗНОСОСТОЙКИХ ПОКРЫТИЙ 2007
  • Хромов Василий Николаевич
  • Зайцев Сергей Александрович
  • Коренев Владислав Николаевич
  • Храпоничев Дмитрий Николаевич
  • Коняев Анатолий Николаевич
  • Коняев Константин Анатольевич
RU2337178C1
Динамометр 1928
  • Серебряков А.П.
SU10846A1
EP 1205454 A1, 15.05.2002
Установка для испытания образца на усталость 1988
  • Лодус Евгений Васильевич
SU1589128A1

RU 2 432 416 C1

Авторы

Крюков Михаил Александрович

Рябенко Борис Владимирович

Шифрин Владимир Владимирович

Курдюков Александр Владимирович

Даты

2011-10-27Публикация

2010-04-12Подача