УСТАНОВКА ДЛЯ КОМБИНИРОВАННОГО ПРОВЕДЕНИЯ ТЕПЛООБМЕНА И СТАТИЧЕСКОГО СМЕШЕНИЯ С ЖИДКОСТЬЮ Российский патент 2011 года по МПК F28D7/08 

Описание патента на изобретение RU2433367C2

Изобретение относится к установке, которая комбинирует теплообмен между жидкостью и средой теплоносителя со статическим смешением жидкости. Изобретение также касается применения этой установки.

Патент ЕР-А-0009638 представляет теплообменник, скомпонованный в виде реактора, с помощью которого теплота реакции полимеризации отводится для поддержания оптимальной температуры. Этот полимеризационный реактор включает трубчатый корпус и встроенные элементы, с помощью которых может выполняться теплоперенос от полимеризуемой смеси, которая представляет собой высоковязкую жидкость. Встроенные элементы одновременно действуют как статический смеситель этой высоковязкой жидкости.

Подобную конструкцию с корпусом и встроенными элементами имеет устройство, для которого были найдены разнообразные варианты применения. Типичное применение состоит в охлаждении расплавленного сложного полиэфира, который формируется в реакторе для поликонденсации при температуре около 290°С. После выведения этого продукта из этого реактора температура должна быть понижена на 10°С, чтобы уменьшить разложение продукта. Охлаждение должно проводиться в устройстве равномерно и в узком диапазоне времени пребывания расплава сложного полиэфира, чтобы получить однородный продукт. При получении тонких полиэфирных волокон нужно весьма точно поддерживать однородность распределения температур расплава.

Известный из патента ЕР-А-0009638 полимеризационный реактор для комбинированного проведения теплообмена и статического смешения включает корпус в форме кожуха, который проходит в продольном направлении между головным концом и базовым концом, и встроенные элементы, которые формируют теплообменную и смесительную структуру. Встроенные элементы состоят из проходящих в продольном направлении труб, которые имеют извилистую форму. Эти трубы ниже иногда называются «теплообменными/смесительными трубами». Каждая труба имеет изогнутые части трубы, а также части трубы, соединяющие эти изогнутые части трубы и являющиеся прямыми и параллельными друг другу. Трубы уложены в виде плоских слоев, соприкасающихся между собой; и соседствующие друг с другом прямые участки труб перекрещиваются. Среда теплоносителя прокачивается в виде внутреннего потока через трубы встроенных элементов. Трубы подключены к головному концу, где также располагается впускной патрубок для наружного потока охлаждаемого продукта. Охлажденный продукт выводится из установки на базовом конце, к которому встроенные элементы не подсоединены. Благодаря отсутствию связи между базовым концом и встроенными элементами отпадает необходимость в компенсировании теплового расширения, каковое потребовалось бы вследствие различного теплового расширения встроенных элементов и корпуса. Различия в тепловом расширении проявляются, в частности, при пусковом режиме, поскольку змеевики почти немедленно достигают температуры теплоносителя, тогда как корпус лишь опосредованно и медленно прогревается полимером в пространстве рубашки.

В известном полимеризационном реакторе теплообмен производится в многооборотном порядке, а именно в первой половине каждой трубы в прямоточном режиме и во второй половине - в противоточном режиме. Внутренний поток среды теплоносителя пересекается благодаря извилистой форме наружного потока высоковязкой жидкости так, что с прямоточным и противоточным течением комбинируется также перекрестное течение.

Задача изобретения состоит в создании усовершенствованной установки, которая функционально скомпонована как известный полимеризационный реактор, однако при этом в данной установке теплообмен производится более эффективно. Эта задача разрешается с помощью установки, определенной в пункте 1 формулы изобретения.

Установка, которая комбинирует теплообмен между жидкостью и средой теплоносителя со статическим смешением жидкости, включает встроенные элементы в кожухе. Кожух проходит в продольном направлении между головным концом и базовым концом. Встроенные элементы формируют теплообменную и смесительную структуру. Среда теплоносителя подается в качестве внутреннего потока в трубы встроенных элементов от базового конца к головному концу. Жидкость подводится в качестве наружного потока от головного конца к базовому концу. Предусматриваются армирующие элементы, которые стабилизируют встроенные элементы в продольном направлении от воздействия градиентов давления, создаваемых в жидкости. Встроенные элементы в главной области соединены армирующими элементами с образованием частичной структуры, которая не подвержена тепловому расширению; и в побочной области, которая является дополнительной для главной области, они остаются как расширяющаяся в продольном направлении частичная структура, по меньшей мере, частично без армирования.

Зависимые пункты 2-9 формулы изобретения относятся к предпочтительным вариантам исполнения установки согласно изобретению. Возможность применения установки согласно изобретению представляет собой предмет пункта 10 формулы изобретения.

Далее изобретение будет разъяснено с привлечением чертежей.

Фиг. 1 представляет головной конец установки согласно изобретению с теплообменной/смесительной трубой,

Фиг. 2 представляет два слоя примыкающих друг к другу теплообменных/смесительных труб,

Фиг. 3 представляет частичный продольный разрез установки согласно изобретению,

Фиг. 4 представляет дальнейший пример армирующих элементов.

Установка 1 согласно изобретению описывается с помощью Фиг.1-4. Эта установка 1, которая комбинирует теплообмен между жидкостью 8 и средой 7 теплоносителя со статическим смешением жидкости 8, включает встроенные элементы 2 и кожух 3 с трубчатым корпусом 3', через который пропускается жидкость 8. Обрабатываемая жидкость 8 типично имеет относительно высокую динамическую вязкость на уровне не менее 1 Па.с; при важнейших вариантах применения установки 1 она представляет собой расплав полимера, который имеет давление, например, 50 бар (5 МПа).

Кожух 3 проходит в продольном направлении между головным концом 4 и базовым концом 5. Встроенные элементы 2 формируют теплообменную и смесительную структуру. Среда 7 теплоносителя протекает как внутренний поток в трубах 21, 22 встроенных элементов 2 от базового конца 5 к головному концу 4. Жидкость 8 протекает как наружный поток от головного конца 4 к базовому концу 5. Предусматриваются армирующие элементы 6 (см. Фиг. 2 и 4), которые стабилизируют встроенные элементы 2 в продольном направлении от воздействия градиентов давления, создаваемых в жидкости 8. Встроенные элементы 2 в главной области соединены армирующими элементами 6 с образованием частичной структуры 2а, которая не подвержена тепловому расширению. В побочной области, которая является дополнительной для главной области, встроенные элементы 2 остаются без армирования или только частично с армированием, так что образуется гибкая, способная к расширению в продольном направлении частичная структура 2b (прямоугольник, обведенный штрихпунктирной линией). Благодаря этой гибкой частичной структуре 2b обеспечивается компенсирование теплового расширения, которое необходимо вследствие различного теплового расширения встроенных элементов 2 и корпуса 3', возникающего, например, при пусковом режиме установки.

В установке 1 согласно изобретению теплообмен производится за один проход, а именно в противоточном режиме. При противоточном режиме, как известно, в среде между внутренним и наружным потоком возникает более значительная разность температур, чем при прямоточном режиме. Поэтому теплообмен может производиться более эффективно, чем при многооборотном теплопереносе в известном полимеризационном реакторе. Тем самым, например, такой реактор, который имеет длину 2 м, может быть заменен противоточным реактором, который является примерно на 35 см более коротким (причем оба реактора имеют одинаковые площади поперечника и одинаковую охлаждающую способность). Одновременно вдвое снижается падение давления внутреннего потока (теплоноситель в форме масла-теплоносителя).

Теплообменные/смесительные трубы, то есть трубы 21, 22 встроенных элементов 2, образуют плоские, уложенные параллельно слои 200, расположение которых в поперечном направлении обозначается в Фиг. 1 штрихпунктирными линиями 204. В каждом слое 200 трубе 22 (соответственно 21) придана извилистая форма, включающая дугообразные изгибы 201 и параллельные прямые участки 202 трубы, от входного конца 25 на базовом конце 5 до выходного конца 24 на головном конце 4. Прямолинейные участки 202 трубы соседствующих слоев 200 пересекаются в точках 203 пересечения. На Фиг. 3 слева представлены две соседствующие трубы 21 и 22, справа только труба 21.

В главной области встроенных элементов 2 трубы 21 и 22 двух соседствующих слоев 200 закреплены на аксиальной, то есть проходящей в продольном направлении, штанге 6', которая образует предпочтительную форму выполнения армирующего элемента 6. Штанга 6' закреплена на базовом конце 5 и проходит через негибкую частичную структуру 2а вплоть до гибкой частичной структуры 2b, которая обеспечивает компенсирование теплового расширения. Возможна также форма выполнения, в которой штанги 6' закреплены на головном конце 4, и гибкая частичная структура 2b формируется на базовом конце 5.

Армирующие элементы 6 предпочтительно сформированы в виде ленточных пластин (не показаны), штанг 6' (Фиг. 2) или соединительных вставок 6” (Фиг. 4), которые распределены по многим местам. Под ленточными пластинами понимают армирующие элементы 6, которые изготовлены хотя и сравнимо с отрезками штанги, но подобно соединительным вставкам 6” в Фиг. 4 расположены с распределением. На штангах 6' или пластинах предусмотрены углубления в виде желобков для укладки труб 21 и 22 так, что соединенные этими пластинами трубы соприкасаются или располагаются на относительно небольших расстояниях друг от друга, которые являются значительно меньшими, чем толщина пластин. Предпочтительно фиксирующие соединения между трубами и пластинами и, соответственно, между трубами и штангами 6' изготавливаются с помощью пайки в паяльной печи. Разумеется, соединения могут быть изготовлены также с помощью сварки. В конструкции армирования, иллюстрированной в Фиг. 4, соединительные вставки 6” связывают каждые два соседних прямых участка 202 трубы. Они предпочтительно являются приваренными.

Негибкая частичная структура 2а главной области сформирована настолько прочной, что встроенные элементы остаются в рабочем состоянии, когда в наружном потоке вследствие сопротивления течению возникают разности давления в продольном направлении между концами установки на уровне, по меньшей мере, 10 бар (1 МПа), предпочтительно 40 бар (4 МПа).

Установка 1 согласно изобретению, как правило, сконструирована так, что головной конец 4 и базовый конец 5 соединяются с кожухом 3, а также со встроенными элементами 2 без возможности разборки. В этом случае встроенные элементы 2 являются несъемными. Если требуются съемные встроенные элементы 2, то может быть предпочтительным использование уже известного устройства (полимеризационного реактора).

Кожух 3 между наружной стенкой 30 и трубчатым корпусом 3' может содержать кольцевой зазор 31, через который может быть пропущен теплоноситель, предпочтительно часть среды теплоносителя 7 (входной патрубок 35 и выходной патрубок 34 теплоносителя).

Теплообменные/смесительные трубы 21, 22 вставлены и закреплены в отверстиях 40 на головном конце 4 и в отверстиях 50 на базовом конце 5. Отверстия 40 располагаются в двух кольцевых сегментах вблизи кожуха; отверстия 50 располагаются в пластине, пересекающей середину базового конца 5. Среда теплоносителя 7 подается через входной патрубок 51, а также распределительную камеру 517 в отдельные трубы 21, 22 встроенных элементов 2 и на их выходе объединяется в коллекторе 417, а также в выходном патрубке 41.

Для жидкости 8 головной конец 4 имеет центральное впускное отверстие 42, и базовый конец 5 имеет выпускное отверстие 52, расположенное сбоку от центра. Оба отверстия 42 и 52 могут быть также расположены в центре или смещены от центра, или впускное отверстие 42 смещено от центра, и выпускное отверстие 52 размещено в центре.

Установка 1 согласно изобретению может быть использована, например, для расплавленного сложного полиэфира или другого расплавленного полимера (жидкость 8), чтобы путем охлаждения свести к минимуму разложение. Другое применение представляет собой нагревание полимера, чтобы сделать его более текучим. Еще одно применение состоит в нагревании или охлаждении высоковязких сред в области пищевых продуктов, таких как шоколадные, карамельные массы или материалы для жевательных резинок. В качестве среды 7 теплоносителя, как правило, используется масляный теплоноситель. Применимы также другие среды, такие как вода или пар.

Похожие патенты RU2433367C2

название год авторы номер документа
РЕАКТОР И СПОСОБ НЕПРЕРЫВНОЙ ПОЛИМЕРИЗАЦИИ 2018
  • Феллер, Рольф
  • Пауль, Ханнс-Ингольф
  • Вагнер, Пауль
  • Виснер, Удо
RU2761057C2
СПОСОБ ПОЛУЧЕНИЯ ЛИСТОВЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ И УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ЛИСТОВЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ 2003
  • Томащук В.И.
  • Крыскин П.И.
  • Ермолаев В.А.
RU2240916C1
СИСТЕМА ТРУБОПРОВОДОВ ДЛЯ ТЕПЛООБМЕННИКОВ 2012
  • Цикели Штефан
  • Эккер Фридрих
RU2596705C2
Многоформенный композитный биметаллический трубопровод 2019
  • Пирожникова Анастасия Петровна
  • Говорунов Максим Александрович
RU2725307C1
ЭНЕРГОТЕХНОЛОГИЧЕСКАЯ УСТАНОВКА ДЛЯ ОХЛАЖДЕНИЯ КОКСА И ТЕРМИЧЕСКОЙ ПОДГОТОВКИ ШИХТЫ 1992
  • Забежинский Л.Д.
  • Дорман Е.И.
  • Пермяков Е.А.
RU2035489C1
РЕАКТОР ДЛЯ ЧАСТИЧНОГО ОКИСЛЕНИЯ ТЕКУЧЕЙ РЕАКЦИОННОЙ СМЕСИ В ПРИСУТСТВИИ ГЕТЕРОГЕННОГО СЫПУЧЕГО КАТАЛИЗАТОРА 2004
  • Ольберт Герхард
  • Хехлер Клаус
RU2371244C2
РЕАКТОР И СПОСОБ ДЛЯ НЕПРЕРЫВНОЙ ПОЛИМЕРИЗАЦИИ 2011
  • Кирххофф Йорг
  • Риттер Йоахим
  • Ляйберих Рикарда
  • Лавгроув Джон
  • Пауль Ханнс-Ингольф
  • Феллер Рольф
  • Виснер Удо
  • Вагнер Пауль
RU2619273C2
Реакционный аппарат 1989
  • Лосик Виктор Иванович
  • Бабинцева Бела Леонидовна
  • Цвигун Наталья Павловна
  • Бабинков Кирилл Николаевич
SU1701362A1
СПОСОБ ПОЛУЧЕНИЯ (МЕТ)АКРОЛЕИНА И/ИЛИ (МЕТ)АКРИЛОВОЙ КИСЛОТЫ 2004
  • Ольберт Герхард
  • Хехлер Клаус
RU2367646C2
Установка утилизации тепла 1989
  • Диденко Владимир Иванович
  • Осередько Юрий Спиридонович
  • Кармозин Юрий Иванович
  • Потехин Борис Николаевич
  • Остапенко Александр Никонович
SU1828988A1

Иллюстрации к изобретению RU 2 433 367 C2

Реферат патента 2011 года УСТАНОВКА ДЛЯ КОМБИНИРОВАННОГО ПРОВЕДЕНИЯ ТЕПЛООБМЕНА И СТАТИЧЕСКОГО СМЕШЕНИЯ С ЖИДКОСТЬЮ

Изобретение относится к теплотехнике и может быть применено в установках, которые комбинирует теплообмен между жидкостью и средой теплоносителя со статическим смешением жидкости, также касается применения этой установки. Установка содержит кожух, который проходит в продольном направлении между головным концом и базовым концом, внутри которого размещены встроенные элементы, образующие теплообменную и смесительную структуру, причем предусмотрена подача среды теплоносителя в качестве внутреннего потока в трубы встроенных элементов от базового конца к головному концу и подача жидкости в качестве наружного потока от головного конца к базовому концу. Установка содержит армирующие элементы для стабилизации встроенных элементов в продольном направлении от градиентов давления, создаваемых жидкостью, причем в главной области они связаны армирующими элементами в частичную структуру, которая не подвержена тепловому расширению, а в побочной области остаются, по меньшей мере, частично неармированными с образованием частичной структуры, способной к тепловому расширению в продольном направлении. Технический результат - повышение эффективности теплообмена, усовершенствование установки. 4 н. и 10 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 433 367 C2

1. Установка (1) для осуществления комбинированного теплообмена между жидкостью (8) и средой (7) теплоносителя со статическим смешением жидкости, причем встроенные элементы (2) в кожухе (3), который проходит в продольном направлении между головным концом (4) и базовым концом (5), образуют теплообменную и смесительную структуру, причем предусмотрена подача среды теплоносителя в качестве внутреннего потока в трубы (21, 22) встроенных элементов от базового конца к головному концу и подача жидкости в качестве наружного потока от головного конца к базовому концу, причем установка содержит армирующие элементы (6, 6′, 6′′) для стабилизации встроенных элементов в продольном направлении от градиентов давления, создаваемых жидкостью, причем встроенные элементы в главной области связаны армирующими элементами в частичную структуру (2а), которая не подвержена тепловому расширению, а в побочной области, которая является дополнительной к главной области, остаются, по меньшей мере, частично неармированными с образованием частичной структуры (2b), способной к тепловому расширению в продольном направлении.

2. Установка по п.1, отличающаяся тем, что трубы (21, 22) встроенных элементов (2) образуют плоские, расположенные параллельно слои (200), в которых каждая из труб является извилистой, включает дугообразные изгибы (201) и параллельные прямые участки (202) труб и проходит от входного конца (25) до выходного конца (24), причем прямые участки труб соседних слоев пересекаются.

3. Установка по п.1 или 2, отличающаяся тем, что в главной области встроенных элементов (2) трубы (21, 22) закреплены на аксиальных, то есть проходящих в продольном направлении, штангах (6') или соединены посредством элементов в форме ленточных пластин, причем на пластинах или штангах предусмотрены углубления в виде желобков для укладки труб, так что трубы, соединенные с помощью этих пластин или штанг, соприкасаются или располагаются на относительно малых расстояниях друг от друга, которые являются значительно меньшими, чем толщина пластин или штанг, причем скрепляющие соединения предпочтительно изготовлены с помощью пайки в паяльной печи.

4. Установка по п.1 или 2, отличающаяся тем, что трубы (21, 22) в главной области встроенных элементов (2) соединены с помощью соединительных вставок (6"), причем скрепляющие соединения предпочтительно изготовлены путем сварки.

5. Установка по п.1, отличающаяся тем, что главная область встроенных элементов (2) выполнена настолько прочной, что встроенные элементы остаются в рабочем состоянии при разности давлений в продольном направлении между концами установки, по меньшей мере, 10 бар (1 МПа), предпочтительно 40 бар (4 МПа).

6. Установка по п.1, отличающаяся тем, что головной и базовый концы (4, 5) соединены с кожухом (3), а также со встроенными элементами (2) без возможности разборки и встроенные элементы являются несъемными.

7. Установка по п.1, отличающаяся тем, что кожух (3) имеет кольцевой зазор (31) для проведения среды теплоносителя.

8. Установка по п.1, отличающаяся тем, что трубы (21, 22) встроенных элементов (2) на головном и базовом концах (4, 5) вставлены и закреплены в отверстиях (40), которые располагаются на кольце вблизи кожуха или на пластине, пересекающей середину головного или, соответственно, базового конца.

9. Установка по п.1, отличающаяся тем, что для жидкости (8) головной конец (4) имеет центральное впускное отверстие (42) и базовый конец (5) имеет смещенное от центра, расположенное сбоку от центра выпускное отверстие (52) или наоборот, или на обоих концах (4, 5) отверстия (42, 52) расположены со смещением от центра или, соответственно, по центру.

10. Применение установки (1) по одному из пп.1-9, причем жидкость (8) представляет собой расплавленный полимер.

11. Применение по п.10, причем расплавленный полимер представляет собой расплав сложного полимера.

12. Применение по п.10, причем среда (7) теплоносителя представляет собой масляный теплоноситель.

13. Способ эксплуатации установки по п.1, при котором в качестве жидкости (8) используют расплавленный полимер, причем осуществляют охлаждение расплавленного полимера для минимизации разложения полимера.

14. Способ эксплуатации установки по п.1, при котором в качестве жидкости (8) используют расплавленный полимер, причем осуществляют нагрев расплавленного полимера для повешения текучести полимера.

Документы, цитированные в отчете о поиске Патент 2011 года RU2433367C2

Станок для точки коньков 1928
  • Мещерин В.Т.
SU9638A1
WO 2004007063 А, 22.01.2004
СПОСОБ ЛЕЧЕНИЯ КОСОЛАПОСТИ С ВНУТРЕННЕЙ ТОРСИЕЙ КОСТЕЙ ГОЛЕНИ У ДЕТЕЙ С ТРЕХЛЕТНЕГО ВОЗРАСТА 2006
  • Конюхов Михаил Павлович
  • Клычкова Ирина Юрьевна
  • Петрова Екатерина Владимировна
RU2346662C2
GB 1376330 А, 04.12.1974
Теплообменник 1990
  • Красникова Оксана Кирилловна
  • Мищенко Тамара Сергеевна
  • Козьмин Юрий Петрович
  • Брейво Арнольд Эдмундович
  • Красносельский Валерий Яковлевич
  • Седова Галина Алексеевна
SU1746185A1

RU 2 433 367 C2

Авторы

Бухер Патрик

Штайнер Курт

Даты

2011-11-10Публикация

2007-07-13Подача