Заявляемое изобретение относится к производству электроизоляционных полимерных материалов для переработки в изделия электротехнического назначения.
Известна (патент RU №2185398 С2) полимерная композиция для изготовления конструкционных электротехнических изделий, содержащая полимерное термопластичное связующее (полипропилен) в количестве 70-80% от общей массы и стекловолокно в качестве армирующего материала (наполнителя) в количестве 10-15%. Недостатками данного материала являются низкая теплостойкость (температура эксплуатации не более 140°C) и горючесть, обусловленные свойствами полипропилена.
Известна (патент RU №2076124 С2) стеклонаполненная полимерная композиция, содержащая в качестве матрицы полимерное термопластичное связующее (полиамид 6) в количестве 58,50-63,88% и стекловолокно в количестве 36-40% от общей массы материала.
Наиболее близким по совокупности существенных признаков техническим решением является принятый за прототип известный (патент RU №2316571 С1) полимерный композиционный материал, состоящий из матрицы в виде полимерного термопластичного связующего (полиамид 6-блочный) и модифицирующей ее углеродной добавки, в качестве которой используется фуллерен C60, или фуллерен C70, или их смесь при следующем соотношении компонентов, мас.%:
К недостаткам прототипа и последнего из вышеуказанных указанных аналогов, препятствующим достижению нижеуказанного технического результата, следует отнести высокое влагопоглощение (более 2,6%), недостаточную теплостойкость и горючесть материала, обусловленные свойствами полиамида, являющегося по своей природе гидрофильным полимером, а также отсутствие армирующего материала.
Задача, на решение которой направлено настоящее изобретение, заключается в создании нового электроизоляционного материала, изделия из которого обладают высокими эксплуатационными качествами наряду с низкой себестоимостью.
Технический результат, получаемый при осуществлении настоящего изобретения, состоит в улучшении электротехнических и механических характеристик композиционного материала.
Указанный технический результат достигается за счет того, что известный композиционный полимерный материал, состоящий из матрицы в виде полимерного термопластичного связующего и модифицирующей ее углеродной добавки в виде фуллерена C60, или фуллерена C70, или их смеси, дополнительно содержит армирующий материал, а в качестве матрицы используется смесь полиэтилентерефталата (ПЭТ) с полифениленсульфидом (ПФС) или смесь полибутилентерефталата (ПБТ) с полисульфоном (ПСФ).
При использовании в качестве матрицы смеси полимерных термопластичных связующих - смеси полиэтилентерефталата (ПЭТ) с полифениленсульфидом (ПФС) или смеси полибутилентерефталата (ПБТ) с полисульфоном (ПСФ) - повышается теплостойкость, снижается влагопоглощение, улучшаются электрическая прочность и диэлектрическая проницаемость композитного материала по сравнению с полиамидом ПА-6 за счет свойств компонентов смеси.
Кроме того, использование в качестве полимерного термопластичного связующего указанных смесей по сравнению с чистым, но дорогим ПФС (http://www.kompamid.ru/material_type.php?binn_rubrik_pl_catelems1=425) обеспечивает конкурентное преимущество нового материала в плане соотношения цена-качество при сохранении его высоких механических и электрических свойств.
Введение в качестве наномодификатора углеродной добавки в состав используемого полимерного термопластичного связующего позволяет получить качественную смесь полимерных связующих за счет снижения вязкости расплава (повышается адгезия к материалу наполнителя) и повышения температуры термодеструкции ПЭТ и ПБТ.
Экспериментальные исследования показали, что введение наномодификатора в количестве менее 0,01% от общей массы вещества не приводит к заметным изменениям характеристик композитного материала. Увеличение концентрации С60 или смеси С60-С70 до 0,1% увеличивает теплостойкость композитного материала до 30%, электрические и механические характеристики до 20%. Увеличение содержания фуллерена более 0,1 мас.% уже не приводит к дальнейшему улучшению электрической прочности материала и поэтому нецелесообразно. Таким образом, указанный ниже количественный интервал указанного наномодификатора является экономически целесообразным, так как дальнейшее увеличение концентрации наномодификатора несмотря на улучшение свойств материала приводит к значительному удорожанию изделий из него.
За счет введения армирующего материала увеличивается механическая прочность композиционного материала. В качестве армирующего материала могут быть использованы и такие материалы, обладающие высокой теплостойкостью и изоляционными свойствами, как, например, стеклоткань (наиболее удобный материал для получения пререгов), базальтовое волокно или ткань из этого волокна.
Получение композитного полимерного материала заявленного состава с наилучшими электротехническими и механическими характеристиками достигается при использовании в качестве армирующего материала стекловолокна или базальтового волокна при следующем соотношении входящих в материал компонентов, мас.%:
- стекловолокно или базальтовое волокно - 30,0-35,0
- фуллерен C60, или фуллерен C70, или их смеси - 0,01-0,1
- смесь полиэтилентерефталата с полифениленсульфидом или смесь полибутилентерефталата с полисульфоном - остальное.
При использовании в качестве упрочнителя диспергированного стекловолокна или базальтового волокна в 2-3 раза улучшаются механические характеристики композита: прочность на сжатие увеличивается до 20%, прочность на растяжение - до 15%. Выбор данного количественного интервала указанного армирующего материала обусловлен тем, что при использовании его в количестве менее 30% ухудшаются механические характеристики композитного материала, более 35% - ухудшаются его электротехнические характеристики. Этот интервал обеспечивает оптимальные характеристики наполненного композита и минимальную усадку при литье.
Использование указанной смеси стеклонаполненных полимеров, модифицированных фуллереном или смесью фуллеренов, позволило создать материал, изделия из которого имеют максимальную температуру эксплуатации до 240°C, что значительно превышает максимальную температуру эксплуатации изделий из материала, выбранного в качестве прототипа, а также улучшить физико-механические характеристики и повысить пожаробезопасность готовых изделий.
Сведения, подтверждающие осуществление изобретения с получением вышеуказанного технического результата, приводятся на примере конкретных композиций.
Пример 1
Композиционный полимерный материал при следующем соотношении входящих в него компонентов, мас.%:
- стекловолокно - 30,0
- фуллерен C60 - 0,01
- смесь полиэтилентерефталата с полифениленсульфидом - 69,99
Пример 2
Композиционный полимерный материал при следующем соотношении входящих в него компонентов, мас.%:
- стекловолокно - 35,0
- фуллерен C70 - 0,1
- смесь полиэтилентерефталата с полифениленсульфидом - 64,9
Пример 3
Композиционный полимерный материал при следующем соотношении входящих в него компонентов, мас.%:
- базальтовое волокно - 31
- смесь фуллерена C60 или фуллерена C70 - 0,9
- смесь полибутилентерефталата с полисульфоном - 68,1
Заявляемый электроизоляционный композиционный материал изготавливают путем, например, пропитки электроизоляционной стеклоткани с помощью известного устройства (патент №2364505 "Устройство для пропитки ленточного материала", 25 декабря 2007 г., патент №2376327 "Антифрикационный композиционный материал", 01 апреля 2008 г.).
Полученный указанным известным способом препрег поступает на измельчитель, в котором происходит диспергирование материала до крупности 0,5-1 мм. Затем крошка измельченного препрега соединяется с гранулами ПЭТ в соотношении 1:2 в специальной центрифуге. Материал готов для загрузки в бункер термопластавтомата.
название | год | авторы | номер документа |
---|---|---|---|
АНТИФРИКЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ | 2008 |
|
RU2376327C1 |
КОАКСИАЛЬНЫЙ ФИЛАМЕНТ ДЛЯ 3D ПРИНТЕРА | 2020 |
|
RU2738388C1 |
ПОЛИАМИДНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, МОДИФИЦИРОВАННЫЙ ФУЛЛЕРЕНОВЫМИ НАПОЛНИТЕЛЯМИ (ВАРИАНТЫ) | 2009 |
|
RU2434033C2 |
КОМПОЗИЦИОННАЯ МЕМБРАНА ДЛЯ ОСУШЕНИЯ ПРИРОДНЫХ И ТЕХНОЛОГИЧЕСКИХ ГАЗОВЫХ СМЕСЕЙ НА ОСНОВЕ ОКСИДА ГРАФЕНА ИНТЕРКАЛИРОВАННОГО ГИДРОКСИЛИРОВАННЫМИ ПРОИЗВОДНЫМИ ФУЛЛЕРЕНОВ | 2019 |
|
RU2730320C1 |
СПОСОБ ПОЛУЧЕНИЯ ФТОРИРОВАННОГО УГЛЕРОДНОГО МАТЕРИАЛА | 2011 |
|
RU2464673C1 |
ПОЛИМЕРНОЕ СВЯЗУЮЩЕЕ, КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ЕГО ОСНОВЕ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2001 |
|
RU2223988C2 |
ПРЕПРЕГ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | 2005 |
|
RU2278028C1 |
АРМАТУРА КОМПОЗИТНАЯ | 2011 |
|
RU2482248C2 |
АМИНОПРОИЗВОДНЫЕ ФУЛЛЕРЕНА С60 И КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, СОДЕРЖАЩИЙ УКАЗАННЫЕ АМИНОПРОИЗВОДНЫЕ | 2004 |
|
RU2254329C1 |
Рукав с наноматериалами (варианты) | 2021 |
|
RU2774496C1 |
Изобретение относится к производству электроизоляционных полимерных материалов для переработки в изделия электротехнического назначения. Композиционный материал состоит из полимерного термопластичного связующего, в качестве которого используется смесь полиэтилентерефталата с полифениленсульфидом или смесь полибутилентерефталата с полисульфоном, модифицирующей углеродной добавки в виде фуллерена С60, или фуллерена С70, или их смеси и армирующего материала, которым могут быть стекловолокно или базальтовое волокно. Изобретение обеспечивает улучшение электротехнических и механических характеристик композиционного материала. 1 з.п. ф-лы.
1. Композиционный полимерный материал, состоящий из матрицы в виде полимерного термопластичного связующего и модифицирующей ее углеродной добавки в виде фуллерена С60, или фуллерена С70, или их смеси, отличающийся тем, что он дополнительно содержит армирующий материал, а в качестве матрицы используют смесь полиэтилентерефталата с полифениленсульфидом или смесь полибутилентерефталата с полисульфоном.
2. Композиционный материал по п.1, отличающийся тем, что в качестве армирующего материала используют стекловолокно или базальтовое волокно при следующем соотношении компонентов, мас.%:
ПОЛИАМИДНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ (ВАРИАНТЫ) | 2006 |
|
RU2316571C1 |
СТЕКЛОНАПОЛНЕННАЯ ПОЛИАМИДНАЯ КОМПОЗИЦИЯ | 1995 |
|
RU2076124C1 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ | 2000 |
|
RU2185398C2 |
US 2008318026 А1, 25.12.2008 | |||
US 7419624 B1, 02.09.2008. |
Авторы
Даты
2011-11-20—Публикация
2010-06-07—Подача