FIELD: process engineering.
SUBSTANCE: invention relates to processing waste gases in production of aromatic dicarboxylic acid by liquid phase oxidation of aromatic dialkyl hydrocarbon, an initial substance, using acetic acid as a solvent, in the presence of metallic catalyst containing, as a promoter, cobalt, manganese and bromine at reactor temperature of 185 to 205°C and using oxygen-containing gas, that comprises the following stages: oxidation reaction waste gas is cooled down and separated. After condensation, waste gas condensing components are separated at high pressure. Obtained waste gas is subjected to wet cleaning at 40°C or lower temperature in high-pressure absorption columns by rinsing fluid into two stages to reduce concentration of components contained therein. Said waste gas at 12.0-16.0 kg/cm2(surplus) is forced through two-stage pressure turbines after heating of said gas fed to turbine first and second stage by steam at pressure of approx. 5 kg/cm2 (surplus) to 140°C - 150°C. Note here that two-stage turbines are used with second stage-to-first stage power ratio varying from 1 to 1.4 to obtain heat- and waste-gas-generated power in compliance with the formula below: (T2/T1)γ=(P2/P1)(γ-1), where γ = Cp/Cv = 1.4, T1, P1 are temperature and pressure at inlet side, T2, P2 are those at outlet side, γ is relation between specific heat capacity at constant pressure Cp to specific heat capacity at constant volume Cv.
EFFECT: efficient process and system.
6 cl, 9 tbl, 3 dwg
Authors
Dates
2011-11-27—Published
2007-02-28—Filed