ДООЧИСТКА ДИЗЕЛЬНОГО ТОПЛИВА Российский патент 2011 года по МПК C10G32/02 F02M27/04 

Описание патента на изобретение RU2436837C2

Во всем мире автомобиль уже давно вступил в фазу, когда его "жизнедеятельность" подвергается гигиеническому контролю. Нормы содержания токсичных компонентов в выхлопных газах все более и более ужесточаются. Изобретение относится к доочистке дизельного топлива постоянными магнитными полями, предназначено для дизельных подводных лодок, газотурбинных установок.

Дизельное топливо, смесь углеводородов, используемая в качестве топлива для дизельных двигателей и газотурбинных установок. Жидкость; tкип 180-360°С, плотность 0,79-0,86 г/см3, η 1,5-8,0 мм2/с, tзаст от -10 до -60°С, tвсп от -38 до 110°С, йодное число 2-6; количество примесей (серо-, азот- и кислородсодержащие производные углеводородов) до 4%. Получают дистилляцией нефти с последующей гидроочисткой и депарафинизацией (для зимних марок); в некоторые сорта добавляют до 20% газойлевых фракций каталитического крекинга. Важные показатели качества всех сортов дизельного топлива - цетановое число и содержание S, которое должно быть менее 0,2% [2].

Йодное число, масса йода (в г), присоединяющегося к 100 г органического вещества. Характеризует степень ненасыщенности органических соединений. Для определения йодного числа к раствору анализируемого вещества в CHCl3 или CCl4 приливают раствор Br2 (IBr или ICl); после завершения реакции прибавляют избыток KI и оттитровывают раствором Na2S2O3 йод, выделившийся при взаимодействии с непрореагировавшим бромом (или хлором). При этом йодное число равно 1,269(V2-V1)/a, где V2 и V1 - объемы (в мл) 0,1 н. раствора Na2S2O3, прошедшие на титровании соответственно в холостом опыте и в опыте с пробой, а - навеска вещества (в г). Для жирных кислот йодное число составляет, например, 100-400, для растительных масел - 100-200, для твердых жиров - 35-85, для жидких жиров - 150-200.

В дизельном топливе присутствуют до 5% примесей: N, S, парафины и др., ухудшая работу двигателя: уменьшается КПД, быстрее изнашивается двигатель, возрастает энергоемкость, уменьшается ресурс работы двигателя, возрастает гидравлическое сопротивление двигателю (например при давлении от двигателя 2-4 атмосферы). Для устранения указанных недостатков предлагается магнитная ловушка (фиг.1) из магнитной ваты, которая в себе концентрирует указанные ненужные взвеси. Дополнительное сопротивление двигателю устраняется магнитным давлением Pm=H2/8р. H - напряженность магнитного поля в эрстедах, π=3,14 - const.

Магнитное давление - действие, оказываемое магнитным полем на плазму (или проводящую жидкость), направленное перпендикулярно силовым линиям. Магнитное давление равно плотности магнитной энергии, т.е. пропорционально квадрату напряженности магнитного поля H: Pm=H2/8р (в ед. СГС). Магнитное давление может уравновешиваться кинетическим давлением плазмы. Превышение магнитного давления над кинетическим приводит к пинч-эффекту.

Практически осуществимые магнитные поля сильно влияют на потоки или плазмы, например магнитное давление (H2/8р) достигает величины 1 атм. При H=5·103 Гс и далее возрастает с полем квадратично. Если к электропроводящей жидкости, помещенной в магнитное поле, приложить внешнее ЭДС, то возникающий ток создает силу F, которая заставляет жидкость двигаться.

Пример 1. При Н=10000 эрстед Pm=0,1·4000000=400000 Па

400000 Па:1,33=4000 мм рт.ст.; 1 мм рт.ст.=1,33 Па.

Пример 2. При Н=1000 Э, Pm=400 мм рт.ст.

Присутствующие в дизельном топливе газообразные, твердые вещества N, S, парафины и др. примеси не нужные обретают в магнитном поле (высоко спиновое состояние) супермагнитные, магнитные свойства и концентрируются на поверхности магнитной ловушки. Магнитная ловушка ферромагнитная - перфорированная или из магнитной ваты (весьма тонкий магнитный провод - «вата») вынимается, регенерируется и снова вставляется в трубу для работы.

Условия проведения экспериментов адекватны традиционным. Высокая оценка качества дизельного топлива (ДТ), полученная заявленным способом и устройством для его осуществления, доказывает конкурентоспособность новой продукции на потребительском рынке и, как следствие, промышленную применимость изобретения.

На основании представленного материала авторы считают, что техническая задача заявленного изобретения решена в полном объеме.

Технический контроль процесса в системе осуществляли одновременно на входе и выходе из устройства.

Устройство для осуществления способа включает: дизельный двигатель внутреннего сгорания (ДДВС, не показан), магнитную систему.

Изобретение относится к физико-химическим технологиям в технике дизельных подводных лодок, подводных аппаратов и технических производствах промышленности, обработки ДТ путем увеличения глубины устойчивого состояния, уменьшения энергозатрат на процесс и энергоемкости оборудования на процесс.

Применение постоянных магнитных полей в системе ДВС позволяет: 1. увеличить эффективность работы ДВС, модернизировать систему и уменьшить затраты на энергоемкость оборудования; 2. использовать аномальные физико-химические свойства Fe, S, N, парафинов и других смесей для глубокой доочистки и достижения устойчивого во времени состояния при нормальных условиях; 3. использовать физико-химические свойства мгновенно (тысячные доли секунды); 4. использовать аномальные физико-химические свойства смеси во взаимодействии с кремнесодержащими материалами и углеводородными полимерами, примененными в системе обработки.

Возможность использования доочистки дизельного топлива (ДТ) термомагнитноплазмохимотронным (ТМПХТ) способом для достижения технического результата, техническое построение схемы показано фиг.1, где схематично изображено устройство для осуществления предлагаемого способа доочистки ДТ. Устройство содержит две взаимосогласованные системы: корпус трубы 1 с крестовиной центровки 3 и термомагнитноплазмохимотронную (ТМПХТ) систему синтеза - магнитную ТМПХТ ловушку 2 (см. фиг.2).

Проведенное авторами дальнейшее развитие теории ТМПХТ способа показало, что при магнитных потенциалах ТМПХТ плазме при 5-10 кЭ возможно образование роста больших кластеров, которые устойчивы в смеси ДТ. Их реакции мгновенно определяют физико-химические реакции: SO3+H2O=H2SO4 происходящих в электролите ТМПХТ между магнитными полюсами.

Отбор и обработку отработанных газов (ОГ) производили в химической лаборатории ВНИИпроектАсбест и Бакальского отряда военизированных горно-спасательных частей (БВГСО) Челябинской, Свердловской областей. Испытания на предельных нагрузках двигателей показали высокую степень уменьшения оксидов углерода, азота, SO2, SO3, смол, альдегидов и других компонентов (Патент СССР №865675 - [1]).

Согласно спектрометрическим данным монохроматическое свечение соответствует кластерам пленочной химотронной плазмы, соответствие квантов света 3,0 эВ на одну молекулу пленочной воды. На основании этих данных энергии гидратации оболочки плазмы кластера оцениваются энергией, соизмеримой с энергией гидратации ионов двухзарядных щелочноземельных и тяжелых металлов 20 эВ.

Исследования при потенциалах магнитного поля 5-10 кЭ показывают образование роста больших кластеров с энергией квантов ТМПХТ плазмы соответствующей энергии 3,0 эВ на молекулу плазмы.

На основании этих данных энергии гидратации кластеров, ионов тяжелых металлов, двухзарядных щелочноземельных и тяжелых металлов 25 эВ и объясняет наличие аномальных физико-химических свойств, именно: - отсутствие водородного газа в смеси топлива; - мгновенную растворимость кластеров тяжелых металлов; возможность аномального увеличения глубины насыщения магнетизма в плазму химотрона малых расходов топлива; - положительное влияние на процесс магнитного поля при обработке смеси кремнесодержащих, углеводородных материалов согласно взаимодействию кластеров с активными центрами материалов, обретающих пьезомагнетизм; - негативное влияние металлов на процесс снижается, обретая супермагнетизм.

Проведенный анализ научно-технической, патентной информации позволил установить, что аналоги, характеризующиеся совокупностями признаков, тождественных всем признакам заявленного способа и устройства для его осуществления, отсутствуют. Следовательно, каждое из заявленных изобретений соответствует патентоспособности изобретательскому уровню.

Работа решает одну и ту же задачу - снижение энергозатрат на процесс, уменьшение гидравлического сопротивления двигателю, увеличение КПД, уменьшение износа двигателя и предназначено в технологических производствах и технике дизельных подводных лодок, подводных аппаратов. Анализ газовых и парогазовых смесей, синтезированных известными физико-химическими методами, показывает, что смеси состоят из устойчивых элементарных (атомно-молекулярных) соединений. С учетом проведенного выше анализа научно-технической, патентной информации техническим решением задачи является увеличение эффективности работы устройства.

Доочистка дизельного топлива

Дизельное топливо, смесь углеводородов, используемая в качестве топлива для дизельных двигателей и газотурбинных установок. Жидкость; tкип 180-360°C, плотность 0,79-0,86 г/см3, η 1,5-8,0 мм2/с, tзаст от -10 до -60°C, tвсп от -38 до 110°C, йодное число 2-6; количество примесей (серо-, азот- и кислородсодержащие производные углеводородов) до 4%. Получают дистилляцией нефти с последующей гидроочисткой и депарафинизацией (для зимних марок); в некоторые сорта добавляют до 20% газойлевых фракций каталитического крекинга. Важные показатели качества всех сортов дизельного топлива - цетановое число и содержание S, которое должно быть менее 0,2%.

Йодное число, масса иода (в г), присоединяющегося к 100 г органического вещества. Характеризует степень ненасыщенности органических соединений. Для определения йодного числа к раствору анализируемого вещества в CHCl3 или CCl4 приливают раствор Br2 (IBr или ICl); после завершения реакции прибавляют избыток KI и оттитровывают раствором Na2S2O3 йод, выделившийся при взаимодействии с непрореагировавшим бромом (или хлором). При этом йодное число равно 1,269 (V2-V1)/a, где V2 и V1 - объемы (в мл) 0,1 н. раствора Na2S2O3, прошедшие на титрование соответственно в холостом опыте и в опыте с пробой, a - навеска вещества (в г). Для жирных кислот йодное число составляет, например, 100-400, для растительных масел - 100-200, для твердых жиров - 35-85, для жидких жиров - 150-200.

В дизельном топливе присутствуют до 5% примесей: N, S, парафины и др., ухудшая работу двигателя: уменьшается КПД, быстрее изнашивается двигатель, возрастает энергоемкость, уменьшается ресурс работы двигателя, возрастает гидравлическое сопротивление двигателю (например, при давлении от двигателя 2-4 атмосферы). Для устранения указанных недостатков предлагается магнитная ловушка (фиг.1) из магнитной ваты, которая в себе концентрирует указанные ненужные взвеси. Дополнительное сопротивление двигателю устраняется магнитным давлением Pm=H2/8р. H - напряженность магнитного поля в эрстедах, π=3,14 - const.

Магнитное давление - действие, оказываемое магнитным полем на плазму (или проводящую жидкость), направленное перпендикулярно силовым линиям. Магнитное давление равно плотности магнитной энергии, т.е. пропорционально квадрату напряженности магнитного поля H: Pm=H2/8р (в ед. СГС). Магнитное давление может уравновешиваться кинетическим давлением плазмы. Превышение магнитного давления над кинетическим приводит к пинч-эффекту.

Практически осуществимые магнитные поля сильно влияют на потоки или плазмы, например магнитное давление (H2/8р) достигает величины 1 атм. При H=5·103 Гс и далее возрастает с полем квадратично. Если к электропроводящей жидкости, помещенной в магнитное поле, приложить внешнее ЭДС, то возникающий ток создает силу F, которая заставляет жидкость двигаться.

1 мм рт.ст.=1,33 Па.

Пример 1. При H=10000 эрстед Pm=0,1·4000000=400000 Па=400000 Па:1,33=4000 мм рт.ст.

Пример 2. При H=1000 Э Pm=400 мм рт.ст.

Присутствующие в дизельном топливе газообразные, твердые вещества N, S, парафины и др. примеси не нужные обретают в магнитном поле (высокоспиновом состоянии) (const магниты) супермагнитные, магнитные свойства и концентрируются на поверхности магнитной ловушки. Магнитная ловушка ферромагнитная перфорированная или из магнитной ваты (весьма тонкий магнитный провод - «вата») вынимается, регенерируется и снова вставляется в трубу для работы.

Источники информации

1. Патент 865675 (СССР). A.M.Силантьев. Транспортное средство. Заявлено 25.02.77. 1981. Бюл. №35.

2. Разработка предложений к техническому заданию на систему снижения токсичности дизелей для карьерного автотранспорта. Заключительный отчет 1-X1-2-82-77 // (Р-1-е-ПП). УДК. 622.621.43.068.4; № Гос. / Регистр.77024.254; Свердловск. ИГД УрО РАН. 1977 г. (Соавтор Филатов С.С.).

Похожие патенты RU2436837C2

название год авторы номер документа
ГАЗОПРОМЫВАТЕЛЬ 2004
  • Неганов Олег Вячеславович
  • Неганова Марина Александровна
  • Силантьев Александр Михайлович
  • Силантьев Сергей Александрович
  • Яковенко Галина Борисовна
RU2277960C2
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ВОДЫ 1997
  • Неганов О.В.
  • Неганова М.А.
  • Силантьев А.М.
  • Силантьев С.А.
  • Яковенко Г.Б.
RU2130432C1
Способ, система и машиночитаемый носитель с программным продуктом для прогнозирования содержания серы в гидроочищенном дизельном топливе 2021
  • Ведерников Олег Сергеевич
  • Панов Александр Васильевич
  • Климин Дмитрий Юрьевич
  • Пузырев Алексей Евгеньевич
  • Пампура Виталий Михайлович
  • Мухаев Дамир
  • Кусаков Андрей Андреевич
  • Меркулов Руслан Фаридович
RU2786373C1
Способ, система и машиночитаемый носитель с программным продуктом для прогнозирования изменения послойной активности катализатора в установке гидроочистки дизельного топлива 2021
  • Ведерников Олег Сергеевич
  • Панов Александр Васильевич
  • Климин Дмитрий Юрьевич
  • Пузырев Алексей Евгеньевич
  • Пампура Виталий Михайлович
  • Корнилов Евгений Вадимович
  • Кусаков Андрей Андреевич
  • Меркулов Руслан Фаридович
RU2797753C1
Способ, система и машиночитаемый носитель с программным продуктом для прогнозирования оптимальной температуры газо-сырьевой смеси на входе в реактор установки гидроочистки дизельного топлива 2021
  • Ведерников Олег Сергеевич
  • Панов Александр Васильевич
  • Климин Дмитрий Юрьевич
  • Пузырев Алексей Евгеньевич
  • Пампура Виталий Михайлович
  • Корнилов Евгений Вадимович
  • Кусаков Андрей Андреевич
  • Меркулов Руслан Фаридович
RU2796210C1
Способ, система и машиночитаемый носитель с программным продуктом для прогнозирования изменения активности катализатора в установке гидроочистки дизельного топлива 2021
  • Ведерников Олег Сергеевич
  • Панов Александр Васильевич
  • Климин Дмитрий Юрьевич
  • Пузырев Алексей Евгеньевич
  • Пампура Виталий Михайлович
  • Мухаев Дамир
  • Кусаков Андрей Андреевич
  • Меркулов Руслан Фаридович
RU2786783C1
СПОСОБ КОМБИНИРОВАННОЙ ВЫРАБОТКИ МЕХАНИЧЕСКОЙ, ТЕПЛОВОЙ ЭНЕРГИИ И ПОЛУЧЕНИЯ ТВЕРДОГО ДИОКСИДА УГЛЕРОДА 2016
  • Безюков Олег Константинович
  • Ерофеев Валентин Леонидович
  • Ерофеева Екатерина Валентиновна
  • Пряхин Александр Сергеевич
RU2691869C2
ОСНОВА ДЛЯ ЭМУЛЬСОЛА НЕФТЯНОГО И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2007
  • Резниченко Ирина Дмитриевна
  • Бочаров Александр Петрович
  • Левина Любовь Александровна
  • Золотых Евгений Владимирович
  • Албутов Олег Владимирович
  • Волчатов Леонид Геннадьевич
  • Юрочкин Владимир Александрович
  • Ротанов Николай Михайлович
RU2346020C1
КАТАЛИЗАТОР ДЕГИДРИРОВАНИЯ С-С ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ 2013
  • Бусыгин Владимир Михайлович
  • Нестеров Олег Николаевич
  • Гильманов Хамит Хамисович
  • Романов Вячеслав Геннадьевич
  • Ламберов Александр Адольфович
  • Егорова Светлана Робертовна
  • Бекмухамедов Гияз Эдуардович
RU2538960C1
Система автоматического управления напуском рабочих и технологических газов в различных режимах работы установки типа токамак 2023
  • Соколов Михаил Михайлович
  • Качкин Александр Георгиевич
  • Игонькина Галина Борисовна
  • Хайрутдинов Эдуард Наилевич
RU2799504C1

Иллюстрации к изобретению RU 2 436 837 C2

Реферат патента 2011 года ДООЧИСТКА ДИЗЕЛЬНОГО ТОПЛИВА

Изобретение относится к доочистке дизельного топлива постоянным магнитным полем, предназначенного для дизельных двигателей, газотурбинных установок. Изобретение касается дизельного топлива, доочистку которого осуществляют постоянным магнитным полем, при этом присутствующие сера, азотсодержащие углеводородов, парафины, ненужные взвеси концентрируются на поверхности магнитной ловушки, представляющей собой тонкий провод, вставленный в трубу (корпус магнитной ловушки). Изобретение также касается способа доочистки дизельного топлива, в котором магнитная ловушка вынимается для регенерации, подвергается регенерации и снова вставляется для работы. Технический результат - улучшение характеристик дизельного топлива, увеличение КПД двигателя. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 436 837 C2

1. Дизельное топливо - смесь углеводородов, используемых в качестве топлива в дизельных двигателях внутреннего сгорания и газотурбинных установках, отличающееся тем, что доочистку топлива осуществляют постоянным магнитным полем, при этом присутствующие сера, азотсодержащие производные углеводородов, парафины, ненужные взвеси концентрируются на поверхности магнитной ловушки, представляющей собой тонкий провод, вставленный в трубу (корпус магнитной ловушки).

2. Способ доочистки дизельного топлива по п.1, отличающийся тем, что магнитная ловушка вынимается для регенерации, подвергается регенерации и снова вставляется для работы.

Документы, цитированные в отчете о поиске Патент 2011 года RU2436837C2

Способ получения топлива 1990
  • Абдулаев Шеквкет Манонович
  • Ашкинази Лев Аврамович
  • Левин Борис Данилович
  • Лисица Александр Николаевич
  • Оганян Аршак Артанадзович
  • Саркисян Александр Шагенович
  • Угом Владимир Петрович
  • Эрсис Антс Альфредович
SU1810379A1
ФИЛЬТР МАГНИТНОЙ ОЧИСТКИ И ОБРАБОТКИ АВТОМОБИЛЬНОГО ТОПЛИВА ЭКОМАГ-10Г 2004
  • Голиков Юрий Иванович
RU2268388C1
Способ измерения детектирующего эффекта кинопленки 1939
  • Ваймбойм В.С.
SU57837A1
Устройство для безболтового соединения рештаков карающегося конвейера 1940
  • Юшин Н.Я.
SU58623A1
СПОСОБ ПЕРЕРАБОТКИ ОТРАБОТАННЫХ НЕФТЕПРОДУКТОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Влодзимер Питер Ржажевски
  • Адам Ержи Задорожни
  • Ройстон Брайант Джефрис
  • Поляк Н.В.(Ru)
  • Толмачев Г.П.(Ru)
  • Юзефович В.И.(Ru)
RU2161176C1
JP 56050993 A, 08.05.1981.

RU 2 436 837 C2

Авторы

Силантьев Александр Михайлович

Яковенко Галина Борисовна

Неганов Олег Вячеславович

Даты

2011-12-20Публикация

2009-06-16Подача