СПОСОБ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ Российский патент 2019 года по МПК B03B9/04 B03B7/00 

Описание патента на изобретение RU2685608C1

Изобретение относится к области переработки техногенного углеродсодержащего сырья и может быть использовано при переработке различных видов подобного сырья, в частности золошлаковых отходов.

Известен способ переработки золошлаковых отходов из отвалов системы гидрозолоудаления тепловых электростанций с целью получения кондиционных зольных продуктов (патент РФ 2569132, опубл. 20.11.2015 г.) в котором производят сушку исходного золошлакового сырья из отработанной секции золоотвала ТЭС и дополнительного измельчения высушенного материала на измельчительном комплексе ударно-центробежного типа со встроенным классификатором, в результате чего происходит реактивация - восстановление активных свойств - и придание материалу заданных кондиционных свойств.

Основные недостатки способа в невозможности выделения магнитных металлических полезных компонентов, что приводит к их потере, а также необходимости использования энергозатратного процесса измельчения.

Известен способ переработки золошлаковых отходов тепловых электростанций для производства строительных изделий (патент 2515786, опубл. 20.05.2014 г.) в котором жидкий шлак или расплавленный твердый шлак переводят в способное к промышленной утилизации и/или складированию состояние путем быстрого охлаждения шлакового расплава воздушно-водяными струями при его аэрогидродинамическом распылении. Для получения вяжущего компонента переработки золы-уноса производят тонкий сухой помол необходимого количества полученного твердого гранулированного шлака при необходимости совместно с добавками активаторов твердения с последующим смешением продукта размола при интенсивном перемешивании с водой и золой-уносом при следующем соотношении компонентов: зола-унос 72-81 мас. %, шлаковое вяжущее 18-9,0 мас. %, вода - не более 10 мас. %, добавки-активаторы твердения - до 0,5 мас. %. Одновременно с интенсивным перемешиванием указанных компонентов осуществляют гранулирование смеси, затем осуществляют термообработку полученных сырцовых гранул переработанной золы-уноса паром, образующимся при охлаждении указанного шлакового расплава.

Основные недостатки способа в невозможности выделения магнитных металлических полезных компонентов, что приводит к их потере, высокой сложности процесса, а также необходимости использования дорогостоящего процесса измельчения.

Известен способ переработки золошлаковых отходов тепловых электростанций (патент РФ 2296624, опубл. 10.04.2007 г. ) в котором производится выделение стеклянных микросфер из общей массы отходов агитацией из пульпы в течение 10-12 минут при соотношении жидкого к твердому Ж:Т=3:1-5:1 с последующим отстоем и снятием их с поверхности пульпы. Выделение несгоревших органических остатков проводят после их измельчения методом флотации. После флотации проводят ступенчатую магнитную сепарацию. Измельчение несгоревших органических остатков проводят до 90% класса - 0,044 мм. Флотацию несгоревших органических остатков проводят при рН исходном равном 7 и рН флотации равном 9 при расходе керосина в пределах 45-70 г/т для основной флотации и в пределах 25-40 г/т для контрольной флотации. Ступенчатую магнитную сепарацию проводят сначала в слабом магнитном поле при 50-150 мТл, а затем в магнитных полях с нарастанием напряженности по ступеням по 200 мТл от 500 до 1700 мТл.

Основные недостатки способа - сложность и экологическая вредность процесса из-за использования флотационного разделения, необходимость обезвоживания продуктов разделения. Высокие энергозатраты из-за необходимости использования процесса измельчения.

Известен способ комплексной переработки золы от сжигания углей (патент 2502568 опубл. 27.08.2013 г.), в котором золу от сжигания углей помещают в реакционную зону, добавляют углеродный сорбент, обеспечивающий поглощение редких и редкоземельных элементов, в количестве 10-25 кг на тонну золы, затем обрабатывают смесью фторида аммония и серной кислоты, нагревают до 120-125°C, выдерживают в течение 30-40 мин, образующийся при этом тетрафторсилан поглощают фторидом аммония и в полученный раствор тетрафторсиликата аммония вводят раствор гидроокиси аммония до осаждения диоксида кремния, после этого добавляют концентрированной серной кислоты в двукратном избытке к содержащемуся в остатке алюминию, выдерживают при температуре 250°C в течение 1,5 ч и обрабатывают водой, твердый остаток отфильтровывают и прокаливают при температуре 800°C. Также из золы может предварительно удаляется железо магнитной сепарацией.

Основные недостатки процесса в его сложности и экологическая вредность из-за использования реагентов.

Известен способ извлечения алюминия и железа из золошлаковых отходов (патент 2436855 опубл. 20.12.2011 г.), принятый за прототип, который включает обработку раствором серной кислоты с экстракцией алюминийсодержащих компонентов в раствор. Перед экстракцией алюминийсодержащих компонентов в раствор отходы подвергают классификации и многостадийной магнитной сепарации при периодическом увеличении поля магнитной индукции для полного выделения магнитной фракции, содержащей железо.

Основные недостатки способа - необходимость использования сложных химических преобразований с использованием серной кислоты и экологическая вредность процесса.

Техническим результатом изобретения является получение готовых продуктов без использование химических преобразований и снижение экологической нагрузки на окружающую среду.

Технический результат достигается тем, что исходное углеродсодержащее сырье классифицируют, с получением крупного и мелкого классов, производят магнитную сепарацию мелкого класса с получением магнитного и немагнитного продукта, при этом магнитную сепарацию мелкого класса осуществляют в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл, крупный класс подвергают магнитной сепарации с выделением немагнитного продукта, который направляют на дальнейшую переработку и магнитного продукта, который дробят и дробленый продукт подвергают сепарации в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл, с получением магнитного продукта и немагнитного продукта, при этом магнитные продукты мелкого и крупного классов отправляют на окускование и далее на металлургическую переработку, а немагнитные продукты направляют на дальнейшую переработку.

Способ переработки техногенного углеродсодержащего сырья поясняется следующей фигурами:

фиг. 1 - технологическая схема переработки;

фиг. 2 - график зависимости эффективности обогащения от частоты бегущего поля;

фиг. 3 - график зависимости эффективности обогащения от индукции поля;

фиг. 4 - график зависимости эффективности обогащения от частоты бегущего поля;

фиг. 5 - график зависимости эффективности обогащения от индукции поля.

Способ осуществляется следующим образом. Исходное техногенное углеродсодержащее сырье (ТУС) подвергается классификации с разделением на крупный и мелкий классы.

Крупный класс подвергают магнитной сепарации на барабанном магнитном сепараторе с выделением немагнитного продукта, который направляют на дальнейшая переработку, например, как сырье для строительной промышленности. И магнитный продукт, который дробят и подвергают сепарации в бегущем магнитном поле при частоте поля 30 - 70 Гц и индукции 40-70 мТл. В ходе сепарации получают немагнитный продукт, направляемый на дальнейшую переработку, например, как сырье для строительной промышленности, и магнитный продукт, который после окускования, например, методом брикетирования используют как сырье для металлургической промышленности.

Мелкий класс подвергают сепарации в бегущем магнитом поле при частоте поля 30-70 Гц и индукции 40-70 мТл. Немагнитный продукт направляют на дальнейшую переработку, например, как сырье для строительной промышленности, а магнитный, после окускования, например, методом брикетирования направляют на металлургическую переработку.

Классификация исходного сырья нужна для выделения крупного и мелкого класса, т.к. сепарация в бегущем магнитном поле ориентирована на обработку мелких частиц. Магнитная сепарация крупного класса позволяет выделить немагнитный продукт, с минимальным содержанием магнитного железа, для дальнейшей переборки. Дробление магнитного продукта нужно для раскрытия

частиц с различной магнитной восприимчивостью. Сепарация в бегущем магнитном поле, позволяет выделить немагнитный продукт, с минимальным содержанием магнитного железа, для дальнейшей переборки и магнитный продукт с кондиционным, для дальнейшей металлургической переработки, содержанием железа. Окускование позволяет подготовить магнитный продукт к металлургической переработке. Сепарация в бегущем магнитном поле мелкого класса, позволяет выделить немагнитный продукт, с минимальным содержанием магнитного железа, для дальнейшей переборки и магнитный продукт с кондиционным, для дальнейшей металлургической переработки, содержанием железа. Окускование позволяет подготовить магнитный продукт к металлургической переработке.

Частота бегущего магнитного поля меньше 30 Гц не позволяет получить кондиционный по содержанию железа продукт, а также снижает извлечение железа в магнитный продукт. Частота больше, чем 70 Гц не повышает содержание железа в магнитном продукте, а извлечение железа при этом понижается. Следовательно, повышение частоты, более 70 Гц нерационально.

Индукция бегущего магнитного поля меньше 40 мТл не позволяет достаточно полно извлекать магнитные частицы (снижает извлечение железа), содержание железа в магнитном продукте при этом не растет. Повышение индукции бегущего магнитного поля выше 70 мТл понижает содержание магнитного железа в магнитном продукте, делая его некондиционным. Кроме того, это повышает расход электроэнергии на переработку.

Дополнительное преимущество способа в возможности перерабатывать как сухие продукты, так и влажные, с различным содержание влаги.

Способ поясняется следующими примерами (за эффективность разделения принят модернизированный критерий оптимальности Хэнкока-Луикена, а именно извлечение железа в магнитную фракцию минус выход магнитной фракции):

Пример 1. Переработке подвергались золошлаковые отходы одной из ТЭЦ. На переработку поступали лежалые золошлаковые отходы из золонакопителя.

Отходы классифицировались на вибрационном грохоте на крупный и мелкий классы. Крупный класс разделялся на немагнитный и магнитный продукты на барабанном магнитном сепараторе. Магнитный продукт додрабливался на валковой дробилке и подвергался магнитной сепарации в бегущем магнитном поле. Магнитный продукт этой сепарации окусковывался методом брикетирования.

Результаты разделения при индукции бегущего поля 50 мТл и при различной частоте приведены поля в таблице 1 и на графике фиг. - 2.

Результаты разделения при частоте бегущего поля 50 Гц и различной индукции приведены в таблице 2 и на графике фиг. - 3.

Пример. 2 Переработке подвергались золошлаковые отходы одной из ТЭЦ непосредствено после их сбора (т.е. отходы не поступали на золонакопитель).

Отходы классифицировались на вибрационном грохоте на крупный и мелкий классы. Золы уноса присоединялись к мелкому классу. Крупный класс разделялся на немагнитный и магнитный продукты на барабанном магнитном сепараторе. Магнитный продукт додрабливался на валковой дробилке и подвергался магнитной сепарации в бегущем магнитном поле. Магнитный продукт этой сепарации окусковывался методом брикетирования.

Результаты разделения при индукции бегущего поля 50 мТл и при различной частоте приведены в таблице 3 и на графике фиг. - 4.

Результаты разделения при частоте бегущего поля 50 Гц и различной индукции приведены в таблице 4 и на графике - фиг. 5.

Способ позволяет перерабатывать техногенное углеродсодержащее сырье с получение товарной продукции.

Похожие патенты RU2685608C1

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ СЛАБОМАГНИТНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ 2018
  • Александрова Татьяна Николаевна
  • Кусков Вадим Борисович
  • Николаева Надежда Валерьевна
RU2677391C1
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОШЛАКОВЫХ ОТХОДОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ 2000
  • Машурьян Владимир Николаевич
  • Царев Владимир Викторович
RU2296624C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО И ТРУДНООБОГАТИМОГО ЖЕЛЕЗОСОДЕРЖАЩЕГО СЫРЬЯ 2016
  • Александрова Татьяна Николаевна
  • Кусков Вадим Борисович
  • Кускова Яна Вадимовна
RU2632059C1
СПОСОБ ОБОГАЩЕНИЯ И ПЕРЕРАБОТКИ ОТХОДОВ ПРОИЗВОДСТВА В ЗАМКНУТОЙ СИСТЕМЕ ЭКОТЕХНОПАРКА 2021
  • Шубов Лазарь Яковлевич
  • Иванков Сергей Иванович
  • Доронкина Ирина Геннадиевна
RU2803085C2
СПОСОБ ИЗВЛЕЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩИХ КОМПОНЕНТОВ ИЗ ТЕХНОГЕННОГО МАТЕРИАЛА ТОНКОГО КЛАССА 2012
  • Прохоров Константин Валерьевич
  • Александрова Татьяна Николаевна
  • Богомяков Роман Владимирович
RU2486012C1
СПОСОБ ПЕРЕРАБОТКИ ПРОМЫШЛЕННЫХ ОТХОДОВ 1994
  • Ряховский С.М.
  • Сысоев Ю.М.
RU2086679C1
Способ комплексной переработки золы отвалов тепловых электростанций и установка для комплексной переработки золы отвалов тепловых электростанций 2016
  • Делицын Леонид Михайлович
  • Рябов Юрий Васильевич
  • Попель Олег Сергеевич
  • Гаджиев Шамиль Абдуллаевич
RU2614003C2
СПОСОБ ИЗВЛЕЧЕНИЯ АЛЮМИНИЯ И ЖЕЛЕЗА ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ 2010
  • Александрова Татьяна Николаевна
  • Прохоров Константин Валерьевич
RU2436855C1
СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗНЫХ РУД 2014
  • Литвиненко Владимир Стефанович
  • Трушко Владимир Леонидович
  • Кусков Вадим Борисович
RU2574560C1
Способ комплексной переработки глиноземсодержащего сырья 2022
  • Фрэж Евгения Владимировна
  • Фрэж Вассим Мунир
  • Бердников Владимир Александрович
RU2787546C1

Иллюстрации к изобретению RU 2 685 608 C1

Реферат патента 2019 года СПОСОБ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ

Изобретение относится к области переработки техногенного углеродсодержащего сырья и может быть использовано при переработке различных видов подобного сырья, в частности золошлаковых отходов. Способ переработки техногенного углеродсодержащего сырья включает классификацию исходного сырья с получением крупного и мелкого классов, магнитную сепарацию мелкого класса с получением магнитного и немагнитного продуктов. Магнитную сепарацию мелкого класса осуществляют в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл. Крупный класс подвергают магнитной сепарации с выделением немагнитного продукта, который направляют на дальнейшую переработку, и магнитного продукта, который дробят, и дробленый продукт подвергают сепарации в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл с получением магнитного продукта и немагнитного продукта. Магнитные продукты мелкого и крупного классов отправляют на окускование и далее на металлургическую переработку, а немагнитные продукты направляют на дальнейшую переработку. Технический результат – повышение эффективности получения готовых продуктов без использования химических преобразований и снижение экологической нагрузки на окружающую среду. 5 ил., 4 табл., 2 пр.

Формула изобретения RU 2 685 608 C1

Способ переработки техногенного углеродсодержащего сырья, включающий классификацию исходного сырья с получением крупного и мелкого классов, магнитную сепарацию мелкого класса с получением магнитного и немагнитного продуктов, отличающийся тем, что магнитную сепарацию мелкого класса осуществляют в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл, а крупный класс подвергают магнитной сепарации с выделением немагнитного продукта, который направляют на дальнейшую переработку, и магнитного продукта, который дробят, и дробленый продукт подвергают сепарации в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл с получением магнитного продукта и немагнитного продукта, при этом магнитные продукты мелкого и крупного классов отправляют на окускование и далее на металлургическую переработку, а немагнитные продукты направляют на дальнейшую переработку.

Документы, цитированные в отчете о поиске Патент 2019 года RU2685608C1

СПОСОБ ИЗВЛЕЧЕНИЯ АЛЮМИНИЯ И ЖЕЛЕЗА ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ 2010
  • Александрова Татьяна Николаевна
  • Прохоров Константин Валерьевич
RU2436855C1
ЛИНИЯ ДЛЯ ПЕРЕРАБОТКИ ЗОЛОШЛАКОВЫХ ОТХОДОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ 2011
  • Науменко Евгений Николаевич
RU2476270C1
Устройство для разметки подлежащих сортированию и резанию лесных материалов 1922
  • Войтинский Н.С.
  • Квятковский М.Ф.
SU123A1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО И ТРУДНООБОГАТИМОГО ЖЕЛЕЗОСОДЕРЖАЩЕГО СЫРЬЯ 2016
  • Александрова Татьяна Николаевна
  • Кусков Вадим Борисович
  • Кускова Яна Вадимовна
RU2632059C1
ПОТОЧНАЯ ЛИНИЯ ДЛЯ ВЫДЕЛЕНИЯ ЦЕННЫХ КОМПОНЕНТОВ ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ 2009
  • Мязин Виктор Петрович
  • Черкасов Валерий Георгиевич
  • Ихисоева Ирина Прокопьевна
  • Астафьев Евгений Владимирович
  • Мязина Валентина Ивановна
  • Шестернев Дмитрий Михайлович
RU2393020C1
WO 2013019618 A2, 07.02.2013
КОРЧЕВЕНКОВ С.А
и др
"Получение кондиционных концентратов железа из нетрадиционных видов сырья с применением бегущего магнитного поля", Металлург, N5, 2017, с
Пишущая машина 1922
  • Блок-Блох Г.К.
SU37A1

RU 2 685 608 C1

Авторы

Александрова Татьяна Николаевна

Кусков Вадим Борисович

Корчевенков Степан Алексеевич

Даты

2019-04-22Публикация

2018-06-15Подача