Изобретение относится к области переработки техногенного углеродсодержащего сырья и может быть использовано при переработке различных видов подобного сырья, в частности золошлаковых отходов.
Известен способ переработки золошлаковых отходов из отвалов системы гидрозолоудаления тепловых электростанций с целью получения кондиционных зольных продуктов (патент РФ 2569132, опубл. 20.11.2015 г.) в котором производят сушку исходного золошлакового сырья из отработанной секции золоотвала ТЭС и дополнительного измельчения высушенного материала на измельчительном комплексе ударно-центробежного типа со встроенным классификатором, в результате чего происходит реактивация - восстановление активных свойств - и придание материалу заданных кондиционных свойств.
Основные недостатки способа в невозможности выделения магнитных металлических полезных компонентов, что приводит к их потере, а также необходимости использования энергозатратного процесса измельчения.
Известен способ переработки золошлаковых отходов тепловых электростанций для производства строительных изделий (патент 2515786, опубл. 20.05.2014 г.) в котором жидкий шлак или расплавленный твердый шлак переводят в способное к промышленной утилизации и/или складированию состояние путем быстрого охлаждения шлакового расплава воздушно-водяными струями при его аэрогидродинамическом распылении. Для получения вяжущего компонента переработки золы-уноса производят тонкий сухой помол необходимого количества полученного твердого гранулированного шлака при необходимости совместно с добавками активаторов твердения с последующим смешением продукта размола при интенсивном перемешивании с водой и золой-уносом при следующем соотношении компонентов: зола-унос 72-81 мас. %, шлаковое вяжущее 18-9,0 мас. %, вода - не более 10 мас. %, добавки-активаторы твердения - до 0,5 мас. %. Одновременно с интенсивным перемешиванием указанных компонентов осуществляют гранулирование смеси, затем осуществляют термообработку полученных сырцовых гранул переработанной золы-уноса паром, образующимся при охлаждении указанного шлакового расплава.
Основные недостатки способа в невозможности выделения магнитных металлических полезных компонентов, что приводит к их потере, высокой сложности процесса, а также необходимости использования дорогостоящего процесса измельчения.
Известен способ переработки золошлаковых отходов тепловых электростанций (патент РФ 2296624, опубл. 10.04.2007 г. ) в котором производится выделение стеклянных микросфер из общей массы отходов агитацией из пульпы в течение 10-12 минут при соотношении жидкого к твердому Ж:Т=3:1-5:1 с последующим отстоем и снятием их с поверхности пульпы. Выделение несгоревших органических остатков проводят после их измельчения методом флотации. После флотации проводят ступенчатую магнитную сепарацию. Измельчение несгоревших органических остатков проводят до 90% класса - 0,044 мм. Флотацию несгоревших органических остатков проводят при рН исходном равном 7 и рН флотации равном 9 при расходе керосина в пределах 45-70 г/т для основной флотации и в пределах 25-40 г/т для контрольной флотации. Ступенчатую магнитную сепарацию проводят сначала в слабом магнитном поле при 50-150 мТл, а затем в магнитных полях с нарастанием напряженности по ступеням по 200 мТл от 500 до 1700 мТл.
Основные недостатки способа - сложность и экологическая вредность процесса из-за использования флотационного разделения, необходимость обезвоживания продуктов разделения. Высокие энергозатраты из-за необходимости использования процесса измельчения.
Известен способ комплексной переработки золы от сжигания углей (патент 2502568 опубл. 27.08.2013 г.), в котором золу от сжигания углей помещают в реакционную зону, добавляют углеродный сорбент, обеспечивающий поглощение редких и редкоземельных элементов, в количестве 10-25 кг на тонну золы, затем обрабатывают смесью фторида аммония и серной кислоты, нагревают до 120-125°C, выдерживают в течение 30-40 мин, образующийся при этом тетрафторсилан поглощают фторидом аммония и в полученный раствор тетрафторсиликата аммония вводят раствор гидроокиси аммония до осаждения диоксида кремния, после этого добавляют концентрированной серной кислоты в двукратном избытке к содержащемуся в остатке алюминию, выдерживают при температуре 250°C в течение 1,5 ч и обрабатывают водой, твердый остаток отфильтровывают и прокаливают при температуре 800°C. Также из золы может предварительно удаляется железо магнитной сепарацией.
Основные недостатки процесса в его сложности и экологическая вредность из-за использования реагентов.
Известен способ извлечения алюминия и железа из золошлаковых отходов (патент 2436855 опубл. 20.12.2011 г.), принятый за прототип, который включает обработку раствором серной кислоты с экстракцией алюминийсодержащих компонентов в раствор. Перед экстракцией алюминийсодержащих компонентов в раствор отходы подвергают классификации и многостадийной магнитной сепарации при периодическом увеличении поля магнитной индукции для полного выделения магнитной фракции, содержащей железо.
Основные недостатки способа - необходимость использования сложных химических преобразований с использованием серной кислоты и экологическая вредность процесса.
Техническим результатом изобретения является получение готовых продуктов без использование химических преобразований и снижение экологической нагрузки на окружающую среду.
Технический результат достигается тем, что исходное углеродсодержащее сырье классифицируют, с получением крупного и мелкого классов, производят магнитную сепарацию мелкого класса с получением магнитного и немагнитного продукта, при этом магнитную сепарацию мелкого класса осуществляют в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл, крупный класс подвергают магнитной сепарации с выделением немагнитного продукта, который направляют на дальнейшую переработку и магнитного продукта, который дробят и дробленый продукт подвергают сепарации в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл, с получением магнитного продукта и немагнитного продукта, при этом магнитные продукты мелкого и крупного классов отправляют на окускование и далее на металлургическую переработку, а немагнитные продукты направляют на дальнейшую переработку.
Способ переработки техногенного углеродсодержащего сырья поясняется следующей фигурами:
фиг. 1 - технологическая схема переработки;
фиг. 2 - график зависимости эффективности обогащения от частоты бегущего поля;
фиг. 3 - график зависимости эффективности обогащения от индукции поля;
фиг. 4 - график зависимости эффективности обогащения от частоты бегущего поля;
фиг. 5 - график зависимости эффективности обогащения от индукции поля.
Способ осуществляется следующим образом. Исходное техногенное углеродсодержащее сырье (ТУС) подвергается классификации с разделением на крупный и мелкий классы.
Крупный класс подвергают магнитной сепарации на барабанном магнитном сепараторе с выделением немагнитного продукта, который направляют на дальнейшая переработку, например, как сырье для строительной промышленности. И магнитный продукт, который дробят и подвергают сепарации в бегущем магнитном поле при частоте поля 30 - 70 Гц и индукции 40-70 мТл. В ходе сепарации получают немагнитный продукт, направляемый на дальнейшую переработку, например, как сырье для строительной промышленности, и магнитный продукт, который после окускования, например, методом брикетирования используют как сырье для металлургической промышленности.
Мелкий класс подвергают сепарации в бегущем магнитом поле при частоте поля 30-70 Гц и индукции 40-70 мТл. Немагнитный продукт направляют на дальнейшую переработку, например, как сырье для строительной промышленности, а магнитный, после окускования, например, методом брикетирования направляют на металлургическую переработку.
Классификация исходного сырья нужна для выделения крупного и мелкого класса, т.к. сепарация в бегущем магнитном поле ориентирована на обработку мелких частиц. Магнитная сепарация крупного класса позволяет выделить немагнитный продукт, с минимальным содержанием магнитного железа, для дальнейшей переборки. Дробление магнитного продукта нужно для раскрытия
частиц с различной магнитной восприимчивостью. Сепарация в бегущем магнитном поле, позволяет выделить немагнитный продукт, с минимальным содержанием магнитного железа, для дальнейшей переборки и магнитный продукт с кондиционным, для дальнейшей металлургической переработки, содержанием железа. Окускование позволяет подготовить магнитный продукт к металлургической переработке. Сепарация в бегущем магнитном поле мелкого класса, позволяет выделить немагнитный продукт, с минимальным содержанием магнитного железа, для дальнейшей переборки и магнитный продукт с кондиционным, для дальнейшей металлургической переработки, содержанием железа. Окускование позволяет подготовить магнитный продукт к металлургической переработке.
Частота бегущего магнитного поля меньше 30 Гц не позволяет получить кондиционный по содержанию железа продукт, а также снижает извлечение железа в магнитный продукт. Частота больше, чем 70 Гц не повышает содержание железа в магнитном продукте, а извлечение железа при этом понижается. Следовательно, повышение частоты, более 70 Гц нерационально.
Индукция бегущего магнитного поля меньше 40 мТл не позволяет достаточно полно извлекать магнитные частицы (снижает извлечение железа), содержание железа в магнитном продукте при этом не растет. Повышение индукции бегущего магнитного поля выше 70 мТл понижает содержание магнитного железа в магнитном продукте, делая его некондиционным. Кроме того, это повышает расход электроэнергии на переработку.
Дополнительное преимущество способа в возможности перерабатывать как сухие продукты, так и влажные, с различным содержание влаги.
Способ поясняется следующими примерами (за эффективность разделения принят модернизированный критерий оптимальности Хэнкока-Луикена, а именно извлечение железа в магнитную фракцию минус выход магнитной фракции):
Пример 1. Переработке подвергались золошлаковые отходы одной из ТЭЦ. На переработку поступали лежалые золошлаковые отходы из золонакопителя.
Отходы классифицировались на вибрационном грохоте на крупный и мелкий классы. Крупный класс разделялся на немагнитный и магнитный продукты на барабанном магнитном сепараторе. Магнитный продукт додрабливался на валковой дробилке и подвергался магнитной сепарации в бегущем магнитном поле. Магнитный продукт этой сепарации окусковывался методом брикетирования.
Результаты разделения при индукции бегущего поля 50 мТл и при различной частоте приведены поля в таблице 1 и на графике фиг. - 2.
Результаты разделения при частоте бегущего поля 50 Гц и различной индукции приведены в таблице 2 и на графике фиг. - 3.
Пример. 2 Переработке подвергались золошлаковые отходы одной из ТЭЦ непосредствено после их сбора (т.е. отходы не поступали на золонакопитель).
Отходы классифицировались на вибрационном грохоте на крупный и мелкий классы. Золы уноса присоединялись к мелкому классу. Крупный класс разделялся на немагнитный и магнитный продукты на барабанном магнитном сепараторе. Магнитный продукт додрабливался на валковой дробилке и подвергался магнитной сепарации в бегущем магнитном поле. Магнитный продукт этой сепарации окусковывался методом брикетирования.
Результаты разделения при индукции бегущего поля 50 мТл и при различной частоте приведены в таблице 3 и на графике фиг. - 4.
Результаты разделения при частоте бегущего поля 50 Гц и различной индукции приведены в таблице 4 и на графике - фиг. 5.
Способ позволяет перерабатывать техногенное углеродсодержащее сырье с получение товарной продукции.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПЕРЕРАБОТКИ СЛАБОМАГНИТНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ | 2018 |
|
RU2677391C1 |
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОШЛАКОВЫХ ОТХОДОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ | 2000 |
|
RU2296624C2 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО И ТРУДНООБОГАТИМОГО ЖЕЛЕЗОСОДЕРЖАЩЕГО СЫРЬЯ | 2016 |
|
RU2632059C1 |
СПОСОБ ОБОГАЩЕНИЯ И ПЕРЕРАБОТКИ ОТХОДОВ ПРОИЗВОДСТВА В ЗАМКНУТОЙ СИСТЕМЕ ЭКОТЕХНОПАРКА | 2021 |
|
RU2803085C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩИХ КОМПОНЕНТОВ ИЗ ТЕХНОГЕННОГО МАТЕРИАЛА ТОНКОГО КЛАССА | 2012 |
|
RU2486012C1 |
СПОСОБ ПЕРЕРАБОТКИ ПРОМЫШЛЕННЫХ ОТХОДОВ | 1994 |
|
RU2086679C1 |
Способ комплексной переработки золы отвалов тепловых электростанций и установка для комплексной переработки золы отвалов тепловых электростанций | 2016 |
|
RU2614003C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ АЛЮМИНИЯ И ЖЕЛЕЗА ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ | 2010 |
|
RU2436855C1 |
СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗНЫХ РУД | 2014 |
|
RU2574560C1 |
Способ комплексной переработки глиноземсодержащего сырья | 2022 |
|
RU2787546C1 |
Изобретение относится к области переработки техногенного углеродсодержащего сырья и может быть использовано при переработке различных видов подобного сырья, в частности золошлаковых отходов. Способ переработки техногенного углеродсодержащего сырья включает классификацию исходного сырья с получением крупного и мелкого классов, магнитную сепарацию мелкого класса с получением магнитного и немагнитного продуктов. Магнитную сепарацию мелкого класса осуществляют в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл. Крупный класс подвергают магнитной сепарации с выделением немагнитного продукта, который направляют на дальнейшую переработку, и магнитного продукта, который дробят, и дробленый продукт подвергают сепарации в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл с получением магнитного продукта и немагнитного продукта. Магнитные продукты мелкого и крупного классов отправляют на окускование и далее на металлургическую переработку, а немагнитные продукты направляют на дальнейшую переработку. Технический результат – повышение эффективности получения готовых продуктов без использования химических преобразований и снижение экологической нагрузки на окружающую среду. 5 ил., 4 табл., 2 пр.
Способ переработки техногенного углеродсодержащего сырья, включающий классификацию исходного сырья с получением крупного и мелкого классов, магнитную сепарацию мелкого класса с получением магнитного и немагнитного продуктов, отличающийся тем, что магнитную сепарацию мелкого класса осуществляют в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл, а крупный класс подвергают магнитной сепарации с выделением немагнитного продукта, который направляют на дальнейшую переработку, и магнитного продукта, который дробят, и дробленый продукт подвергают сепарации в бегущем магнитном поле при частоте от 30 до 70 Гц и индукции от 40 до 70 мТл с получением магнитного продукта и немагнитного продукта, при этом магнитные продукты мелкого и крупного классов отправляют на окускование и далее на металлургическую переработку, а немагнитные продукты направляют на дальнейшую переработку.
СПОСОБ ИЗВЛЕЧЕНИЯ АЛЮМИНИЯ И ЖЕЛЕЗА ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ | 2010 |
|
RU2436855C1 |
ЛИНИЯ ДЛЯ ПЕРЕРАБОТКИ ЗОЛОШЛАКОВЫХ ОТХОДОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ | 2011 |
|
RU2476270C1 |
Устройство для разметки подлежащих сортированию и резанию лесных материалов | 1922 |
|
SU123A1 |
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО И ТРУДНООБОГАТИМОГО ЖЕЛЕЗОСОДЕРЖАЩЕГО СЫРЬЯ | 2016 |
|
RU2632059C1 |
ПОТОЧНАЯ ЛИНИЯ ДЛЯ ВЫДЕЛЕНИЯ ЦЕННЫХ КОМПОНЕНТОВ ИЗ ЗОЛОШЛАКОВЫХ ОТХОДОВ | 2009 |
|
RU2393020C1 |
WO 2013019618 A2, 07.02.2013 | |||
КОРЧЕВЕНКОВ С.А | |||
и др | |||
"Получение кондиционных концентратов железа из нетрадиционных видов сырья с применением бегущего магнитного поля", Металлург, N5, 2017, с | |||
Пишущая машина | 1922 |
|
SU37A1 |
Авторы
Даты
2019-04-22—Публикация
2018-06-15—Подача