Способ получения оксидов кремния, алюминия и железа при комплексной безотходной переработке из золошлаковых материалов Российский патент 2019 года по МПК C22B7/00 C22B1/02 C22B3/04 C01B33/00 C01F7/00 

Описание патента на изобретение RU2694937C1

Изобретение относится к комплексной безотходной технологии получения оксидов кремния (SiO2), алюминия (Al2O3) и железа (Fe2O3) из золошлаковых отходов (ЗШО), образующихся в результате сжигания органического топлива (уголь каменный или бурый, торф, лигниты, горючие сланцы, древесина, отходы животноводства, птицеводства, сельского хозяйства), содержащих SiO2, Al2O3, Fe2O3, K2O, CaO, MgO, редкие и редкоземельные элементы.

Диоксид кремния (SiO2) под наименованием «белая сажа» широко используется в шинной, резинотехнической, химической, фармацевтической и других отраслях промышленности. Одним из производителей «белой сажи» в России является ОАО «Сода» г. Стерлитамак, Башкортостан. Технология данного производства основана на взаимодействии силиката натрия с растворами хлористого кальция и неорганических кислот.Согласно ГОСТ 18307-78 «Сажа белая» эта технология обеспечивает содержание SiO2 в «белой саже» в диапазоне не менее 76-87% масс.

Оксид алюминия (Al2O3) различных модификаций является сырьем для получения металлического алюминия, специальных видов керамики, огнеупоров, корунда, электроизоляционных изделий, носителей для катализаторов. Оксид алюминия извлекают из алюмосодержащих руд (бокситов, нефелинов, алунитов и др.). ГОСТ 30558-98 «Глинозем металлургический» устанавливает содержание Al2O3 для различных марок от 99,64% до 99,31%, ГОСТ 8136-85 «Оксид алюминия активный» - не менее 99,92%.

Оксид железа (Fe2O3) применяется в качестве пигмента и наполнителя в производстве красок, эмалей, пластмасс, стекол, керамики, строительных материалов, резины и т.д. Синтетические железооксидные пигменты получаются из солей железа путем осаждения и прокаливания, а также из металлического железа путем окисления.

Технические данные красного, желтого, черного и коричневого железооксидных пигментов.

http://www.vsdcom.ru/Russian/ferro_oxide.htm

Показатель Fe2O3, Fe3О4 Содерж. железа Вещества р-римые в воде Влагоемкость Термо потери при 1000 °С за 0,5 ч Масло-емкость Величина- PH Остаток на сите 0,045 мм Нормальное отклонение цветности Красящая способность (ГОСТ) GB 1863.51 GB 5211.2 GB 5211.3 ISO 55913 GB 5211.15 GB 1717 GB 1715 ISO 6174 GB 1708 Пределы Не меньше % Не больше% Не больше % Не больше% Приблиз. % Величина Не больше % dЕ Не больше Величина Красные
S110
S120
S130
S140(190)

94
95
95
95

0.7
0.7
1.0
1.0

1.0
1.0
1.0
1.0

5
5
5
5

25
25
25
25

3.5-7
3.5-7
3.5-7
3.5-7

0.3
0.3
0.3
0.3

1.0
1.0
1.0
1.0

95-105
95-105
95-105
95-105
Желтые S920
S930(313)
S960
86
86
86
0.5
0.5
0.5
1.0
1.0
1.0
14
14
14
40
40
40
3-6
3-6
0.3
0.3
0.3
1.0
1.0
1.0
95-105
95-105
95-105
Черные S306(722)
S320(720)
330(723)

95
95
95

0.5
0.5
1.0

1.0
1.0
1.0

5-8
5-8
5-8

0.3
0.3
0.3

1.0
1.0
1.0

95-105
95-105
95-105
Коричнев. S610
S660
S686(868)

85
90
94

0.5
0.5
0.5

1.0
1.0
1.0

30
25
25

3.5-7
3.5-7
3.5-7

0.5
0.5
0.5

1.0
1.0
1.0

95-105
95-105
95-105
Зеленая S565(5605) 1.0 0.5 1.0 95-105

Но наибольшее применение оксид железа находит в металлургическом производстве в виде концентратов, агломератов и окатышей. Ценность железосодержащих материалов определяется содержанием в них главного компонента (Fe2О3), а также полезных (Mn, Ni, Cr, V, Ti), вредных (S, P, As, Zn, Pb, Cu, K, Na) и шлакообразующих (Si, Ca, Mg, Al) примесей. Полезные примеси являются естественными легирующими элементами стали, улучшающими ее свойства. Вредные примеси или ухудшают свойства металла (сера и медь придают металлу красноломкость, фосфор - хладоломкость, мышьяк и медь понижают свариваемость), или усложняют процесс выплавки чугуна (цинк разрушает огнеупорную кладку печи, свинец - лещадь, калий и натрий вызывают образование настылей в газоходах). Поэтому ведущие производители концентратов, агломератов и окатышей устанавливают следующие требования по содержанию оксида железа (Fe2O3), например, Стойленский ГОК для агломератов 74,36% (СТО 00186826-029-2015), для окатышей 92,38% (СТО 00186826-034-2013) или Лебединский ГОК для концентрата железорудного 95,1 - 97,24% (ТУ 0712-030-00186803-99).

Задачей настоящего изобретения является извлечение основных компонентов SiO2, Al2O3, Fe2O3 из ЗШО в виде товарных продуктов, отвечающих вышеуказанным требованиям.

Известен «Способ переработки зольных отходов» (RU 2306981). Зольные отходы или зола, образующиеся после сжигания угля или другого топлива, смешивают с водой с получением разбавленной тонкодисперсной суспензии, в которую вводят углеводород и белоксодержащие реагенты в соотношении соответственно от 1:1 до 1:15. В качестве углеводородсодержащего реагента используют отходы нефтепереработки, а в качестве белоксодержащего реагента - биомассу микроорганизмов, в частности биомассу активного ила. Схема флотационного разделения разбавленной тонкодисперсной суспензии золы включает проведение основной флотации при расходе воздуха 0,5-1,5 м32 мин, а затем флотационной перечистки получаемого пенного концентрата при расходе воздуха 0,1-0,3 м32 мин и контрольной флотации камерного продукта. Получаемый концентрат содержит 85-98% угля, который может быть использован в качестве дополнительного источника топлива. Камерный продукт после контрольной флотации в виде хвостов используют в производстве цемента и других вяжущих. Недостатком способа является лишь один товарный продукт - угольный концентрат, составляющий не более 1-5% от основной массы зольных отходов и практически необработанная (99-95%) масса зольных отходов, которую предлагается направить в производство цемента и других вяжущих.

Известна «Линия для переработки золошлаковых отходов тепловых электростанций» (RU 2476270). Линия содержит последовательно соединенные устройство приема ЗШО, устройства для магнитной сепарации и фильтрации. Устройство приема ЗШО выполнено в виде промывочного агрегата, состоящего из емкости с механической мешалкой или соплами для подвода воды под напором и трубопроводом для подачи воды. В качестве устройств для магнитной сепарации используют барабанные высокоградиентные магнитные сепараторы как минимум первой и второй ступени. Линия дополнительно снабжена устройством для измельчения магнитной фракции, размещенным между магнитными сепараторами первой и второй ступени. В качестве устройств для фильтрации магнитной и немагнитной фракций используют дисковые вакуумные фильтры. Недостатком способа является лишь один товарный продукт - магнитная фракция с содержанием оксидов железа не более 55% и основная масса ЗШО в виде немагнитной фракции, требующей дальнейшей переработки.

Известен «Способ переработки золошлаковых отходов тепловых электростанций» (RU 2000116204), включающий разделение смесей на легкую и тяжелую фракции, вывод легкой фракции и выделение полых стеклянных микросфер из легкой фракции с последующим сбором полых стеклянных микросфер в верхней части сосуда, а несгоревших органических остатков в нижней части сосуда, отличающийся тем, что выделение стеклянных микросфер проводят из общей массы ЗШО агитацией в течение 10-12 мин из пульпы при соотношении жидкого к твердому Ж : Т=3-5 : 1 с последующим отстоем и снятием их с поверхности пульпы, а выделение несгоревших органических остатков проводят после доизмельчения оставшейся ЗШО методом флотации перед разделением золы на легкую и тяжелую фракции путем ступенчатой магнитной сепарации. Недостатком способа является получение двух товарных продуктов - стеклянных микросфер и концентрата недожега, составляющих 2-5% от массы исходных ЗШО, и остальную необработанную массу исходных ЗШО.

Известен «Способ переработки золы и/или шлака котельных и теплоэлектростанций» (RU 2344887), включающий флотацию и удаление легких и тяжелых частиц из водной суспензии золы и/или шлака. Переработку производят комплексно в одном реакторе с получением ряда полезных продуктов в определенной последовательности. В реактор загружают золу-унос ТЭС и/или размолотый котельный шлак, заливают их водой и размешивают, получая водную суспензию и при необходимости добавляя в воду поверхностно-активные и изменяющие плотность воды вещества для регулирования долей легкой и тяжелой фракций. Затем удаляют из реактора всплывшие легкие частицы, вводят в реактор гидроксид натрия, в результате чего получают жидкое техническое стекло, которое выпускают из реактора. Оставшееся содержимое промывают водой, получая слабощелочной раствор, также выпускаемый из реактора. Затем постадийно обрабатывают остаток реагентами при повышенных температурах (до 100°С), растворяя соединения металлов и получая электролиты, выпускаемые из реактора. При каждой вышеописанной операции золу и/или шлак перемешивают с добавляемыми реагентами, а в последнюю очередь выгружают из реактора нерастворенный остаток. Недостатком способа является получение всего одного товарного продукта - жидкого технического стекла, остальные продукты, заявленные авторами, фактически являются либо сырьем для других продуктов, либо полупродуктами, требующими дальнейшей переработки.

Известен «Способ переработки золы энергетических углей на глинозем и гипс» (RU 2027669), включающий обжиг золы с фторидом кальция. Обожженную золу обрабатывают серной кислотой при 180-200°С. После обработки серной кислотой ведут спекание при 200-300°С при разрежении 0,2-0,3 кгс/см2 с отводом газов при 120-150°С, последующим поглощением их раствором аммиака и выщелачиванием спека. Недостатками способа являются безвозвратное применение дефицитного фторида кальция и отсутствие регенерации фторсодержащего реагента.

Известен «Способ гидрохимического получения высокодисперсного диоксида кремния из техногенного кремнийсодержащего сырья» (RU 2261841), включающий обработку золы ТЭЦ фторирующим агентом с последующим поглощением образующегося при этом газообразного тетрафторсилана (SiF4) раствором фторида аммония и отделением образующегося при последующей нейтрализации диоксида кремния. В качестве фторирующего агента используют смесь природного фторида кальция или отхода алюминиевого производства с 50-55% серной кислотой. Недостатком способа является безвозвратное применение дефицитного фторида кальция, отсутствие регенерации фторсодержащего реагента и неполная переработка золы (соединения алюминия и железа остаются в твердом остатке), накопление гипса в твердом остатке.

Известен «Способ комплексной переработки золы от сжигания углей» (RU 2502568), в котором золу от сжигания углей помещают в реакционную зону, добавляют углеродный сорбент в количестве 10-25 кг на тонну золы. Затем производят обработку смесью фторида аммония и серной кислоты, нагревают до 120-125°C, выдерживают в течение 30-40 минут. Образующийся в результате обработки тетрафторсилан (SiF4) поглощают фторидом аммония. В полученный раствор тетрафторсиликата аммония вводят раствор гидроокиси аммония до осаждения диоксида кремния. Затем добавляют концентрированную серную кислоту в двукратном избытке к содержащемуся в остатке алюминию, выдерживают при температуре 250°C в течение 1,5 часа и обрабатывают водой. Твердый остаток прокаливают при температуре 800°C. Способ обеспечивает получение из отходов ряда продуктов: высокодисперсного диоксида кремния, сульфата алюминия, концентрата редких и редкоземельных элементов. Недостатками способа являются: безвозвратное применение дорогостоящего фторида аммония; отсутствие регенерации фторида аммония; образование побочного продукта - водного раствора сульфата аммония неизвестной концентрации, дальнейшее использование которого не указано; получение товарного продукта - сульфата алюминия в виде водного раствора неизвестной концентрации (продажа сульфата алюминия в виде сухой соли более предпочтительна); использование высоких температур (+250°С) для среды - концентрированная серная кислота + фтористый водород, вызывает повышенную коррозию оборудования; использование магнитной сепарации не обеспечивает полного удаления соединений железа, которое загрязняет получаемый водный раствор сульфата аммония.

Известен способ-прототип «Способ выделения ценных компонентов из угольных золошлаков» (RU 2363742), включающий смешивание исходного сырья с реагентом, нагрев смеси, водное выщелачивание и выделение компонентов из растворов. В качестве реагента при смешивании используют фторид аммония, гидродифторид аммония или их смесь. Отличительной особенностью указанного способа является то, что нагрев смеси проводят при температуре от +130 до +240°C для гидрофторирования. Из нагретой профторированной массы проводят сублимационное отделение фторидных летучих соединений при температуре +320-600°C с последующей десублимацией их на поверхности, температура которой +100-270°C, и разделением методом пирогидролиза путем обработки десублимата парами воды. Водному выщелачиванию подвергают остаток после гидрофторирования и сублимационного отделения. Нерастворимый остаток после водного выщелачивания подвергают сернокислотному выщелачиванию с последующим фильтрационным отделением нерастворимых сульфатов. Выделение компонентов из растворов сернокислотного и водного выщелачивания ведут методом аммиачного гидролиза. Указанные особенности способа определяют его следующие недостатки:

- использование процессов сублимации и, как следствие, повышенных температур (+320-600 °С) для получения товарного SiO2;

- товарный Fe(OH)3 загрязнен Mn(OH)2;

- побочный продукт (NH4)2SO4 загрязнен KOH;

- применение концентрированной серной кислоты для перевода фторидов алюминия и кальция в сульфаты влечет использование высокой температуры до +250 °С, которая вызывает повышенную коррозию оборудования из-за активной коррозионной среды - серная кислота + фтористый водород;

- повышенные температуры приводят к увеличению затрат энергии;

- повышенная продолжительность всего процесса.

Задачей настоящего изобретения является комплексная безотходная технология получения оксидов кремния, алюминия и железа из ЗШО в виде товарных продуктов с содержанием основного вещества не менее 98%, а также устранение недостатков, свойственных способу-прототипу.

Поставленная задача решается тем, что предварительно измельченные ЗШО смешивают с фторидом аммония, нагревают до +180-190°С, выдерживают в нагретом состоянии в течение 2 часов до завершения фторирования с образованием гексафторсиликата, гексафторалюмината и гексафторферрата аммония, выщелачивают профторированную смесь водой при температуре +20-30°С, фильтруют, обрабатывают раствор гексаторсиликата аммония аммиачной водой для образования осадка SiO2, фильтруют и получают осадок SiO2, выщелачивают твердый остаток с предыдущего выщелачивания водой при температуре +20-30°С, фильтруют, обрабатывают раствор гексафтоалюмината и гексафторферрата аммония аммиачной водой для образования осадка Al(OH)3 и Fe(OH)3, фильтруют, обрабатывают осадок Al(OH)3 и Fe(OH)3 раствором едкой щелочи для образования раствора алюмината, фильтруют и получают осадок Fe(OH)3, обрабатывают раствор алюмината неорганической кислотой для образованием осадка Al(OH)3 и раствора неорганической соли, фильтруют и получают осадок Al(OH)3, выпаривают раствор до сухой неорганической соли. В результате обработки растворов гексафторсиликата, гексафторалюмината и гексафторферрата аммония аммиачной водой образуются растворы фторида аммония, их выпаривают до получения сухой соли и направляют на смешивание с новой порцией ЗШО. Выделенные SiO2, Al(OH)3 и Fe(OH)3 сушат и прокаливают в муфельных печах, при этом гидроксиды превращаются в Al2O3 и Fe2O3.

Дополнительно предлагается производить выбор едкой щелочи и неорганической кислоты из возможности сбыта неорганической соли, например, в случае использования едкого калия и азотной кислоты или серной кислоты образуются нитрат калия или сульфат калия (минеральные удобрения), которые имеют большую вероятность сбыта, по сравнению с сульфатом натрия, который образуется при использовании едкого натра и серной кислоты. Однако, в случае потребности в сульфате натрия, нужно использовать едкий натр и серную кислоту, которые более дешевы, по сравнению с едким кали и азотной кислотой.

Вышеуказанный технический результат достигается, по мнению заявителя, вследствие использования растворения гексафторсиликата аммония водой при температуре +20-30 °С на стадии отделения гексафторсиликата аммония от профторированной смеси вместо сублимации и десублимации гексафторсиликата аммония при +400 °С. Происходящее практически мгновенно, селективное отделение гексафторсиликата аммония от гексафторалюмината и гексафторферрата аммония обусловлено значительной разницей в их растворимости, вместо водного и высокотемпературного сернокислотного выщелачиваний использовано свойство амфотерности Al(OH)3, проявляющееся в том, что при обработке едкой щелочью смеси гидрооксидов алюминия и железа, Al(OH)3 растворяется, превращаясь в алюминат, а Fe(OH)3 остается без изменений и выделяется в отдельный продукт, образования дополнительного продукта в виде неорганической соли, например, KNO3 или K2SO4, обладающей повышенной вероятностью сбыта на стадии получения Al(OH)3.

Наибольшей температурой в способе являются +180-190 °С, применяемая на стадии фторирования исходной ЗШО, на остальных стадиях температура не превышает +30 °С, что позволяет использовать на этих стадиях стандартное оборудование из полимеров (полиэтилены, полипропилены и т.д.) или стеклопластиков и сократить затраты энергии. Для стадии фторирования подходит только фторопласт и углеродный стеклопластик. Кроме стадии фторирования исходной ЗШО (2 часа), остальные стадии не требуют существенных затрат времени, поскольку все процессы в водных средах (растворение, химический обмен, осаждение и т.д.) проходят практически мгновенно, что определяет сокращение продолжительности всех стадий.

Пример 1. Исходный материал в виде ЗШО ТЭЦ-22 г.Москвы, содержащий 58% SiO2, 22% Al2O3, 4,91% Fe2O3, 1,91% K2O, 4,13% CaO, 1,84% MgO, 0,94% Na2O, в количестве 100 г смешивают с 336 г фторида аммония, загружают в тигель из углеродного стеклопластика, нагревают до +190 °С, выдерживают при этой температуре 2 часа, при этом образуются гексафторсиликат, гексафторалюминат и гексафторферрат аммония, профторированную смесь выщелачивают водой при +30 °С, фильтруют, обрабатывают полученный раствор гексафторсиликата аммония 262 г 25% аммиачной воды для образования осадка SiO2, фильтруют и получают осадок SiO2 в количестве 57 г, выщелачивают водой при +30 °С твердый остаток, образовавшийся от предыдущего выщелачивания, фильтруют, обрабатывают полученный раствор гексафторалюмината и гексафторферрата аммония 102 г 25% аммиачной воды для образования осадка 34 г Al(OH)3 и 6,5 г Fe(OH)3, фильтруют, обрабатывают осадок Al(OH)3 и Fe(OH)3 водным раствором, содержащим 24 г 100% КОН, образуется раствор алюмината калия, фильтруют и получают 6,4 г Fe(OH)3, обрабатывают раствор алюмината калия раствором, содержащим 27,5 г 100% HNO3, для образования осадка 34 г Al(OH)3 и раствора, содержащего 44 г KNO3, фильтруют и получают осадок 33,7 г Al(OH)3, выпаривают раствор KNO3 до 44 г сухой соли. Осадки SiO2, Al(OH)3 и Fe(OH)3 сушат и прокаливают в муфельной печи и получают 57 г SiO2, 21 г Al2O3 и 4,5 г Fe2O3. Содержание SiO2, Al2O3 и Fe2O3 в этих осадках составляет 98,7, 98,5 и 98,4% соответственно.

В прототипе не указаны время стадий сублимации и пирогидролиза. Из научно-технической литературы следует, что эти процессы имеют продолжительность не менее 2 и 1 часа соответственно. Стадия сернокислотного выщелачивание в прототипе занимает 20 минут, таким образом общее время этих стадий составляет 2 часа 20 минут. При прочих равных условиях, именно на такое время сокращается процесс получения оксидов кремния, алюминия и железа из ЗШО по настоящему изобретению. Также очевидно, что использование низких температур (+30 °С) на всех стадиях, кроме фторирования, существенно снижает затраты энергии, количественное выражение которого затруднительно определить вследствие недостаточности данных в прототипе.

Пример 2. Обработку исходного материала ведут по примеру 1, с тем отличием, что смесь загружают в тигель из фторопласта Ф-4МБ, смесь нагревают до +180 °С, все процессы выщелачивания проводят при температуре +20 °С. Получают 57,2 г SiO2, 20,8 г Al2O3 и 4,8 г Fe2O3. Содержание SiO2, Al2O3 и Fe2O3 в этих осадках составляет 98,9, 98,7 и 98,6% соответственно. Использование более низкой температуры за счет большей разницы в растворимостях гексафторсиликата, гексафторалюмината и гексафторферрата аммония позволило получить более чистые продукты.

Пример 3. Обработку исходного материала ведут по примеру 1, с тем отличием, что используют золу уноса Рефтинской ГРЭС, содержащей 61% SiO2, 28% Al2O3, 3% Fe2O3, 0,6% K2O, 1,4% CaO, 0,81% MgO, 0,25% Na2O, а вместо азотной кислоты используют серную кислоту, золу уноса в количестве 100 г смешивают с 365 г фторида аммония, загружают в тигель из углеродного стеклопластика, нагревают до +190 °С, выдерживают при этой температуре 2 часа, при этом образуются гексафторсиликат, гексафторалюминат и гексафторферрат аммония, профторированную смесь выщелачивают водой при +30 °С, фильтруют, обрабатывают полученный раствор гексафторсиликата аммония 275 г 25% аммиачной воды для образования осадка SiO2, фильтруют и получают осадок SiO2 в количестве 60 г, выщелачивают водой при +30 °С твердый остаток, образовавшийся от предыдущего выщелачивания, фильтруют, обрабатывают полученный раствор гексафторалюмината и гексафторферрата аммония 122 г 25% аммиачной воды для образования осадка 43 г Al(OH)3 и 4 г Fe(OH)3, фильтруют, обрабатывают осадок Al(OH)3 и Fe(OH)3 водным раствором, содержащим 31 г 100% КОН, образуется раствор алюмината калия, фильтруют и получают 4 г Fe(OH)3, обрабатывают раствор алюмината калия раствором, содержащим 54 г 100% H2SO4, для образования осадка 43 г Al(OH)3 и раствора, содержащего 96 г K2SO4, фильтруют и получают осадок 42,7 г Al(OH)3, выпаривают раствор K2SO4 до 95 г сухой соли. Осадки SiO2, Al(OH)3 и Fe(OH)3 сушат и прокаливают в муфельной печи и получают 59,8 г SiO2, 27,7 г Al2O3 и 2,9 г Fe2O3. Содержание SiO2, Al2O3 и Fe2O3 в этих осадках составляет 99,0, 98,8 и 98,5% соответственно.

Похожие патенты RU2694937C1

название год авторы номер документа
Способ выделения из золы содержащихся в ней компонентов 2019
  • Бородуля Станислав Анатольевич
  • Зотов Андрей Андреевич
  • Раков Алексей Николаевич
  • Тертышный Игорь Григорьевич
  • Шелестов Максим Сергеевич
RU2732886C2
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО ДИОКСИДА КРЕМНИЯ 2015
  • Дударев Степан Юрьевич
RU2600640C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО SiO (ДИОКСИДА КРЕМНИЯ) 2014
  • Дударев Степан Юрьевич
  • Тертышный Игорь Григорьевич
RU2567954C1
Способ получения белой сажи из отходов углеобогащения 2023
  • Черкасова Татьяна Григорьевна
  • Баранцев Денис Александрович
  • Плотников Вячеслав Алексеевич
RU2819726C1
Способ получения концентрата редкоземельных элементов из отработанного катализатора крекинга углеводородов нефти 2021
  • Адеева Людмила Никифоровна
  • Пужель Александра Олеговна
  • Борисов Вадим Андреевич
RU2776117C1
СПОСОБ ПЕРЕРАБОТКИ КИАНИТОВОГО КОНЦЕНТРАТА 2013
  • Гришин Николай Никитович
  • Иванова Алла Геннадьевна
RU2518807C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНОГО МЕДНО-НИКЕЛЕВОГО КОНЦЕНТРАТА 2007
  • Макаров Дмитрий Викторович
  • Нестеров Дмитрий Павлович
RU2349653C1
СПОСОБ ПЕРЕРАБОТКИ ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ 1997
  • Мельниченко Е.И.
  • Моисеенко В.Г.
  • Сергиенко В.И.
  • Эпов Д.Г.
  • Римкевич В.С.
  • Крысенко Г.Ф.
RU2120487C1
СПОСОБ ПЕРЕРАБОТКИ ЦИРКОНА С ПОЛУЧЕНИЕМ ДИОКСИДА ЦИРКОНИЯ 2009
  • Симонов Юрий Александрович
  • Крицкий Александр Александрович
  • Рычков Владимир Николаевич
  • Томашов Владимир Андреевич
  • Челпанов Виктор Вячеславович
RU2434956C2
СПОСОБ ПОЛУЧЕНИЯ ФТОРИДА АЛЮМИНИЯ 1999
  • Моисеенко В.Г.
  • Римкевич В.С.
RU2172718C1

Реферат патента 2019 года Способ получения оксидов кремния, алюминия и железа при комплексной безотходной переработке из золошлаковых материалов

Изобретение относится к комплексной безотходной технологии получения оксидов кремния, алюминия и железа из золошлаковых отходов (ЗШО). Способ включает нагрев смеси ЗШО с фторидом аммония, выщелачивание водой смеси при температуре 20-30°С, фильтрование, обработку раствора аммиачной водой для образования осадка SiO2. Далее ведут выщелачивание водой при температуре 20-30°С твердого остатка, образовавшегося после предыдущего выщелачивания водой, и обработку полученного раствора аммиачной водой для образования осадка Al(OH)3 и Fe(OH)3. Затем проводят обработку осадка Al(OH)3 и Fe(OH)3 раствором едкой щелочи с образованием раствора алюмината и получением осадка Fe(OH)3. Далее обрабатывают раствор неорганической кислотой с образованием осадка Al(OH)3 и раствора неорганической соли. Технический результат заключается в получении оксидов кремния, алюминия и железа с содержанием основного вещества не менее 98%, использовании низких температур, уменьшении стоимости оборудования, продолжительности всего процесса и затрат энергии. 3 з.п. ф-лы, 1 табл., 3 пр.

Формула изобретения RU 2 694 937 C1

1. Способ комплексной безотходной технологии получения оксидов кремния, алюминия и железа с содержанием основного вещества не менее 98% из золошлаковых отходов (ЗШО), включающий смешивание ЗШО с фторидом аммония, нагрев смеси с образованием фторидов кремния, алюминия и железа, выщелачивание водой, выделение компонентов из растворов и их отделение, отличающийся тем, что отделение кремния от алюминия и железа осуществляют путем водного выщелачивания фторидов кремния, алюминия и железа при температуре 20-30°С, выделение из растворов кремния в виде диоксида кремния, алюминия и железа в виде гидрооксидов ведут методом аммиачного гидролиза, отделение алюминия в виде алюмината от железа осуществляют обработкой гидроксидов алюминия и железа едкой щелочью, превращение алюмината в гидрооксид алюминия ведут обработкой неорганической кислотой с получением дополнительного продукта в виде неорганической соли.

2. Способ по п.1, отличающийся тем, что в качестве едкой щелочи используют едкое кали или едкий натр.

3. Способ по п.1, отличающийся тем, что в качестве неорганической кислоты используют азотную или серную кислоты.

4. Способ по п.1, отличающийся тем, что нагрев смеси проводят при температуре 180-190°С.

Документы, цитированные в отчете о поиске Патент 2019 года RU2694937C1

СПОСОБ ВЫДЕЛЕНИЯ ЦЕННЫХ КОМПОНЕНТОВ ИЗ УГОЛЬНЫХ ЗОЛОШЛАКОВ 2008
  • Дьяченко Александр Николаевич
  • Крайденко Роман Иванович
RU2363742C1
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ И РАДИОАКТИВНЫХ МЕТАЛЛОВ ИЗ ОКИСЛЕННОГО ТЕХНОЛОГИЧЕСКИ УПОРНОГО СЫРЬЯ 2000
  • Борбат В.Ф.
  • Адеева Л.Н.
  • Мухин В.А.
  • Михайлов Ю.Л.
RU2170775C1
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ ОТХОДОВ СЖИГАНИЯ СЕРНИСТЫХ МАЗУТОВ 2006
  • Лукомская Галина Алексеевна
  • Шакиров Камиль Закирьянович
  • Петрова Людмила Ивановна
  • Лайнер Юрий Абрамович
  • Галич Валерьян Михайлович
  • Денисов Генрих Александрович
  • Денисов Сергей Генрихович
RU2334800C1
US 4816236 А, 28.03.1989
Рентгеноконтрастное средство 1982
  • Власов Павел Васильевич
  • Якименко Владимир Федорович
SU1169661A1
US 4389378 А, 21.06.1983
JP 60166228 А, 29.08.1985.

RU 2 694 937 C1

Авторы

Тертышный Игорь Григорьевич

Булин Даниэль Дмитриевич

Даты

2019-07-18Публикация

2018-01-18Подача