Изобретение относится к технологиям утилизации едких продуктов переработки минеральных концентратов и рекомендуется к применению в процессах с участием сернокислотной их обработки.
Известен способ утилизации, включающий разбавление фторангидрита, выходящего из печи, 20-30%-ной добавкой шлака с последующим использованием полученного вяжущего в дорожном полотне или в составе мелких стеновых блоков /RU 2046097 С1/. Недостатком указанного способа является использование в смеси компонента с повышенным, 4-9%, содержанием хрома. Кроме того этот вид шлака не относится к распространенным видам отходов и поэтому его применение связано с существенными затратами на его дальнее транспортирование.
Известен способ утилизации фторангидрита, включающий нейтрализацию остатков кислоты в составе продукта известью, которую вводят в 28-73%-ном избытке от стехиометрического количества, дальнейшее разбавление полученной смеси 10-30% добавкой отвального фторгипса и последующей грануляцией полученной трехкомпонентной смеси /RU 2171791 С1/. Недостатком данного способа следует считать использование больших количеств извести и влажного фторгипса, отбираемого из шламохранилища, что усложняет и удорожает процесс нейтрализации, а также затрудняет утилизацию ее продукта ввиду низкой прочности и водостойкости гранул.
Техническими задачами изобретения являются:
- упрощение и удешевление технологии утилизации фторангидрита, повышение прочностных свойств продукта утилизации и расширение области его применения.
Указанная задача решается путем введения в состав фторангидрита дисперсного электросталеплавильного шлака в количестве 5-85% от массы исходного фторангидрита и грануляции полученной смеси.
Опытную проверку заявляемого способа осуществляли на фторангидрите Полевского криолитового завода, содержащем разное количество серной кислоты, с использованием вспомогательных материалов, наименование и химический состав которых приведен в табл.1.
Химический состав использованных материалов
Для оценки уровня нейтрализации кислоты в составе фторангидрита использовали косвенный показатель в виде прочности на сжатие шлакогипсового вяжущего, поскольку его величина обратно пропорциональна содержанию кислоты во фторангидрите. Показатель прочности оценивали на образцах-таблетках диаметром 28 и высотой 20 мм, сформованных на тесте полужесткой консистенции. Полученные образцы хранились в воздушно-влажных условиях. Непосредственно перед испытанием они высушивались, а затем испытывались на прочность по сжатию.
τнейтр, сут - длительность процесса нейтрализации в сутках; r (ретур) - количество фракции размером до 1,25 мм, необходимое для получения гранул заданной крупности; W, % - влажность полученных гранул; ρн, г/см3 - насыпная плотность гранул; Rсж, МПа - предел прочности гранул при сжатии их в цилиндре.
В табл.2 сравниваются результаты заявляемого способа нейтрализации и прототипа. Количество шлака, используемого для нейтрализации, составляло 1 часть на 9 частей ангидрита. При нейтрализации по прототипу в состав смеси кроме извести дополнительно вводили 30% отвального фторгипса, отобранного из отвала.
Из представленного следует, что в сравнении с прототипом процесс нейтрализации исходной смеси возможен при пониженной температуре. При этом в 6 раз сокращается продолжительность процесса нейтрализации, а остаток кислоты в продукте значительно ниже.
В табл.3 содержатся данные по составу и прочностным свойствам образцов таблеток, полученных на продукте по заявляемому способу нейтрализации в зависимости от количества шлака, использованного для нейтрализации фторангидрита.
Из представленного в таблице следует, что прочность брикетов в значительной степени определяется содержанием шлака. С увеличением содержания шлака с 10 до 50% прочность образцов увеличивается примерно в 5 раз, а для 70-85% она возрастает в 10 раз. Исходя из указанного, целесообразно использовать смеси с 10-20% содержанием шлака как добавку, регулирующую сроки схватывания портландцемента. При более высоком содержании шлака гранулированную смесь целесообразно использовать как пористый заполнитель для легких бетонов, а также в качестве комплексной гипсошлаковой добавки в составе портландцемента, одновременно заменяющей гипсовый камень и доменный гранулированный шлак. Содержание шлака менее 5 и более 85% нецелесообразно, так как прочность брикетов в указанном интервале максимальна и достаточна как при использовании гранул в качестве заменителя гипса в составе цемента (5-30% шлака), так и для замены щебня в составе бетона (30-85% шлака).
В табл.4 сравниваются результаты испытания фторангидритовых гранул в качестве добавки, регулирующей сроки схватывания цемента с гипсовым камнем, традиционной добавкой, и гранулами, полученными по прототипу. Во всех составах содержание SO3 составляло 2,5%. Помол цемента, включающего 20% доменного гранулированного шлака, осуществляли в одинаковых условиях. Полученные цементы испытывали по ГОСТ 310.1-3-76 и ГОСТ 310.4-81.
Sуд, м2/кг - величина удельной поверхности цемента; * - по прототипу. Величина В/Ц соответствует тесту нормальной густоты. Количество сталеплавильного шлака в гранулах составляет 30%. Из табл.4 следует, что фторангидритовые гранулы с добавкой сталеплавильного шлака в составе портландцемента являются полноценным заменителем гипсового камня. При этом доля клинкера в составе по заявляемому способу ниже на количество шлака, содержащегося в гранулах, то есть в этом случае обеспечивается некоторое удешевление цемента.
Гранулы на основе фторангидрита и 70% шлака размером 8-10 мм твердели в воздушно-влажных условиях в течение 7 суток, а затем использовались как заполнитель в составе бетона в сочетании с кварцевым песком и цементом М400Д20 при водоцементном отношении 0,5. Насыпная плотность гранул составила 1100 г/л, средняя плотность - 1,57 г/см3, а точеная прочность 30-70 кг/гранулу. Бетонную смесь формовали в образцы-кубы с ребром 70 мм, твердевшие в нормальных условиях 7 суток. В контрольном составе гранулы заменяли гранитным щебнем фракции 5-10 мм. В качестве мелкого заполнителя использовали песок с модулем крупности 2,5. Из смеси указанного состава формовали образцы с ребром 70 мм, твердевшие во влажных опилках. В табл.5 содержатся результаты по составам и прочностным свойствам бетонов на шлакогипсовых гранулах.
Из представленного следует, что фторангидритовые гранулы, полученные по заявляемому способу, пригодны как заполнитель для получения облегченных бетонов плотностью ниже 2000 кг/м3, что существенно расширяет область их возможного эффективного применения. В сравнении с прототипом прочность бетона на данных гранулах при равном расходе цемента вдвое выше.
Таким образом, использование предлагаемого способа позволяет обеспечить более эффективную нейтрализацию кислотной составляющей фторангидрита, а полученный гранулированный продукт отличается улучшенными потребительскими свойствами - ускоренным твердением и повышенной прочностью. В том случае, когда гранулы применяются для регулирования сроков схватывания цемента возможно уменьшить долю клинкера в составе цемента на количество шлака, содержащегося в гранулах. Когда гранулы используются как искусственный заполнитель, то на их основе возможно получение высокопрочного бетона марки М300 - состав 4, табл.5. Высокие скорость твердения и показатель прочности фторангидрита с добавкой композиции, вероятно, обусловлены присутствием в составе электроплавильного шлака алюминатов кальция, которые, как известно, обеспечивают аналогичные показатели у глиноземистого цемента. Благодаря добавке шлака гранулы на основе фторангидрита можно использовать в материалоемких направлениях в качестве заменителя природного гипса - как регулятора сроков схватывания в составе портландцемента и как заменителя щебня в составе строительного бетона.
Использование изобретения позволит не только упростить и удешевить нейтрализацию фторангидрита, но также значительно увеличить объем утилизации фторангидрита, который на текущий момент не превышает нескольких процентов. Это позволит существенно снизить потери пространства под их отвальное складирование.
название | год | авторы | номер документа |
---|---|---|---|
ЦЕМЕНТ | 1998 |
|
RU2119897C1 |
Зольно-ангидритовое вяжущее | 2015 |
|
RU2620673C2 |
Высокопрочное фторангидритовое вяжущее, способ получения высокопрочного фторангидритового вяжущего и композиции на его основе( варианты) | 2019 |
|
RU2723788C1 |
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ | 1991 |
|
RU2016872C1 |
СПОСОБ ПОЛУЧЕНИЯ ГИПСОВОГО ВЯЖУЩЕГО | 1992 |
|
RU2070169C1 |
СПОСОБ ПОЛУЧЕНИЯ ГИПСОВОГО ВЯЖУЩЕГО | 2009 |
|
RU2408549C1 |
СУЛЬФАТНО-СИЛИКАТНОЕ ВЯЖУЩЕЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2008 |
|
RU2450989C2 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ ПОРТЛАНДЦЕМЕНТНОГО КЛИНКЕРА | 2008 |
|
RU2358929C1 |
Способ получения фторангидритового вяжущего | 1991 |
|
SU1773889A1 |
Состав для укрепления грунтов оснований при строительстве, реконструкции и капитальном ремонте автомобильных дорог | 2022 |
|
RU2803756C1 |
Изобретение относится к технологиям утилизации фторангидрита, попутного продукта технологии получения плавиковой кислоты. Способ включает введение в состав фторангидрита компонента, содержащего известь, с целью нейтрализации сернокислотной составляющей, грануляцию полученной смеси с последующим применением гранул в производстве строительных материалов. В качестве компонента, содержащего известь, используют дисперсный электросталеплавильный шлак в количестве от 5 до 85% от массы фторангидрита. Технический результат - повышение прочностных свойств продукта утилизации, упрощение и удешевление технологии утилизации фторангидрита. 5 табл.
Способ утилизации фторангидрита, включающий введение в его состав компонента, содержащего известь с целью нейтрализации сернокислотной составляющей, грануляцию полученной смеси с последующим применением гранул в производстве строительных материалов, отличающийся тем, что в качестве компонента, содержащего известь, используют дисперсный электросталеплавильный шлак в количестве от 5 до 85% от массы фторангидрита.
СПОСОБ ПОЛУЧЕНИЯ ГИПСОВОГО ВЯЖУЩЕГО | 2000 |
|
RU2171791C1 |
Способ утилизации гипса из отходов производства плавиковой кислоты | 1975 |
|
SU615042A1 |
Способ получения гранулированного сульфата кальция | 1987 |
|
SU1673516A1 |
СПОСОБ УТИЛИЗАЦИИ ГИПСА ИЗ ОТХОДОВ ПРОИЗВОДСТВА ПЛАВИКОВОЙ КИСЛОТЫ ИЛИ БЕЗВОДНОГО ФТОРИСТОГО ВОДОРОДА | 1992 |
|
RU2046097C1 |
CN 101555017 A, 14.10.2009. |
Авторы
Даты
2012-01-27—Публикация
2010-01-20—Подача