СПОСОБ ПОЛУЧЕНИЯ ВАНАДИЕВЫХ ПРОДУКТОВ С ИСПОЛЬЗОВАНИЕМ МЕТОДА ФЛЮИДИЗАЦИИ Российский патент 2012 года по МПК C22B34/22 C22B1/04 C22B1/10 

Описание патента на изобретение RU2441083C1

Область техники

Изобретение относится к способу получения ванадиевых продуктов с использованием метода флюидизации и относится к процессам выделения ванадия.

Уровень техники

Ванадиевые шлаки - это вид обогащенных ванадием материалов, которые выделяют из горячих металлов, содержащих ванадий, с использованием газов, содержащих кислород, таких как кислород или воздух, обогащенный кислородом. В обычных ванадиевых шлаках ванадий присутствует в составе феррованадиевых шпинелей в трехвалентной форме, химическая формула феррованадия может быть представлена как FeO·V2O3, причем в силикатной фазе присутствует небольшое количество кальция.

Обычные ванадиевые шлаки подразделяют на 7 категорий по содержанию пентоксида ванадия. Химический состав обычных ванадиевых шлаков должен отвечать данным, приведенным в таблице 1.

Таблица 1 Категория Химический состав, % V2O5 SiO2 Р СаО/V2O5 Сорт 1 Сорт 2 Сорт 3 Сорт 1 Сорт 2 Сорт 3 Сорт 1 Сорт 2 Сорт 3 FZ9 8,0-10,0 FZ11 10,0-12,0 FZ13 12,0-14,0 FZ15 14,0-16,0 16,0 20,0 24,0 0,13 0,30 0,50 0,11 0,16 0,22 FZ17 16,0-18,0 FZ19 18,0-20,0 FZ21 >20,0

Из таблицы 1 видно, что стандарт для обычных ванадиевых шлаков имеет строгие требования по содержанию СаО, а соотношение СаО/V2О5 в ванадиевых шлаках первого сорта должно быть не более 0,11, а третьего сорта - не более 0,22.

Обычно для производства ванадиевых продуктов, таких как продукты оксида ванадия, феррованадия, нитрида ванадия, из обычных ванадиевых шлаков используют способ выделения ванадия посредством обжига с натрием и выщелачивания водой ванадиевых шлаков. Например, Pangang Group Company Ltd. и Сhеnggаng Group в Китае, Нижнетагильский и Чусовской металлургические заводы в России, Highveld Steel и Vanadium Corp.Ltd. в Южной Африке, Steel Mining Limited в Новой Зеландии и т.д., используют этот способ. Этот способ обычно включает следующие операции: равномерное перемешивание измельченных ванадиевых шлаков с натриевой солью, такой как Na2СО3, добавление полученной смеси во вращающуюся печь для обжига или в многоподовую печь, постепенное нагревание от низкой температуры, составляющей 200°С, до 760-850°С и обжиг в течение 2-5 часов. Обожженный продукт, который называют спекшимся или прокаленным продуктом (клинкером), выгружают из печи, растворяют и выщелачивают водой для того, чтобы растворимый ванадат натрия перешел в раствор для последующего получения ванадиевых продуктов.

Другой способ обжига с известью с использованием серной кислоты используется на ОАО «Ванадий-Тула» в России. Этот способ включает следующие операции: обжиг известьсодержащего вещества в качестве добавки и измельченных ванадиевых шлаков во вращающейся печи для обжига или в многоподовой печи, постепенное нагревание от низкой температуры, составляющей 200-300°С, до 880-950°С, выдерживание при 880-950°С в течение 1-3 часов, выгрузку смеси из печи с получением так называемого прокаленного обожженного клинкера. В этом клинкере ванадий присутствует в виде ванадата кальция или ванадата кальция-магния, которые переводят в раствор путем растворения и выщелачивания серной кислотой для последующего получения ванадиевых продуктов. Этот способ с использованием обжига с известью и серной кислоты является более предпочтительным по сравнению со способом обжига с натрием, поскольку сточные воды можно более легко очистить для соответствия национальному стандарту. Поскольку в способе обжига с известью используется известьсодержащее вещество в качестве добавки, содержание СаО в ванадиевых шлаках жестко не регламентируется и может достигать 4,5-5,5%. На ОАО «Ванадий-Тула» в России требуется, чтобы соотношение СаО/V2О5 составляло 0,7-0,75, а температура обжига была 800-860°С (заявка на патент РФ 97113072/02), также требуется добавлять необходимое количество извести, а осадок выщелачивают серной кислотой.

Все заводы по производству ванадия в мире используют вращающиеся печи для обжига или многоподовые печи в качестве оборудования для обжига, независимо от того, какой способ применяют - обжиг с натрием и с водой или с кальцием и с серной кислотой, ни один из заводов не использует для обжига ванадиевых шлаков метод флюидизации (псевдоожижения) и оборудование для него, поскольку добавки (натриевые соли или кальциевые соли), которые являются необходимыми в обоих описанных способах, при флюидизации сильно отличаются в отношении механических свойств от свойств ванадиевых шлаков, и сырьевые материалы для получения ванадия невозможно равномерно перемешать с добавками для их взаимодействия в печи с псевдоожиженным слоем, поскольку наблюдается сегрегация и получается недостаточный обжиг по сравнению с обжигом во вращающейся печи для обжига или в многоподовой печи. Поэтому для обжига обычно используются вращающиеся печи для обжига или многоподовые печи. Ранее проводили изучение методов обжига смеси титаномагнетита ванадия и хлорида натрия с использованием оборудования с псевдоожиженным слоем, однако эти методы приводили к существенной сегрегации и очень низкому результату, поэтому эти методы не применяются на производстве.

По причинам, описанным выше, в настоящее время отсутствуют публикации по производству ванадиевых продуктов путем обжига ванадиевых шлаков с высоким содержанием кальция с использованием печей с псевдоожиженным слоем.

Печь с псевдоожиженным слоем имеет очень высокую эффективность по теплопереносу, равномерно смешивает частицы и имеет относительно равномерное температурное поле. Поэтому печь с псевдоожиженным слоем имеет преимущества, которые заключаются в коротком времени реакции, адекватном контакте между материалами и кислородом, низких энергозатратах, высокой эффективности производства, высокой емкости оборудования при сравнении с вращающейся печью для обжига, многоподовой печью и шахтной печью того же объема.

Проблема, которую требуется решить при осуществлении обжига, заключается в обеспечении равномерного смешивания сырья, содержащего ванадий, и добавок. При получении ванадиевых шлаков из горячего металла, содержащего ванадий, добавляют достаточное количество извести, в результате получают ванадиевые шлаки, обогащенные кальцием, которые называются ванадиевыми шлаками с высоким содержанием кальция. Большая часть ванадия в ванадиевых шлаках с высоким содержанием кальция все еще присутствует в составе шпинелей феррованадия, а кальций главным образом содержится в силикатной фазе. Обжиг в печи с псевдоожиженным слоем ванадиевых шлаков с высоким содержанием кальция является существенной инновацией в методике выделения ванадия.

Сущность изобретения

Проблема, которую решает изобретение, заключается в преодолении недостатков высокого энергопотребления, низкой эффективности, низкой емкости оборудования и т.д. при получении ванадиевых продуктов из ванадиевых шлаков согласно уровню техники. Изобретение предлагает эффективный энергосберегающий способ получения ванадиевых продуктов с хорошим окислительным эффектом. Изобретение характеризуется тем, что в качестве сырья берут ванадиевые шлаки с высоким содержанием кальция, при этом не добавляют никаких добавок для обжига в псевдоожиженном слое, равномерно смешивают и должным образом обжигают материал в печи с псевдоожиженным слоем, в процессе чего происходит равномерная реакция, при которой ванадий превращается в ванадат кальция и ванадат кальция-магния, что представляет собой существенную инновацию в методике выделения ванадия.

Изобретение реализуется по следующей схеме:

а) готовят ванадиевые шлаки с высоким содержанием кальция, где массовое соотношение CaO/V2O5 составляет 0,5-1,4 (что означает 0,5≤СаО/V2O5≤0,7 и 0,7<СаО/V2O5≤1,4), предпочтительно 0,66-1,3 (что означает 0,66≤СаО/V2O5≤0,7 и 0,7<СаО/V2O5≤1,3), более предпочтительно 0,8-1,19;

b) осуществляют обжиг ванадиевых шлаков с высоким содержанием кальция в печи с псевдоожиженным слоем, при котором средняя температура составляет 850°С-950°С (предпочтительно 880°С-940°С) и средняя продолжительность нахождения в печи составляет 30-150 минут (предпочтительно 50-120 минут) с получением обожженного клинкера;

причем в печь с псевдоожиженным слоем можно подавать избыточное количество воздуха или воздуха, обогащенного кислородом, для улучшения окисления. Например, каменноугольный газ, природный газ и нефтяное топливо сжигают, затем смешивают с воздухом и подают в печь с псевдоожиженным слоем для нагревания материала, обеспечивая достаточную окислительную атмосферу в печи, для окисления четырехвалентного ванадия до пятивалентного ванадия, и получают ванадат;

с) осуществляют выщелачивание обожженного клинкера в растворе серной кислоты и затем получают ванадиевые продукты из этого раствора.

Кроме того, для более легкого окисления шпинелей феррованадия ванадиевые шлаки с высоким содержанием кальция из стадии «а» измельчают до размеров частиц менее 0,125 мм, причем более 95% частиц имеют диаметр менее 0,1 мм.

Выщелачивание на стадии «с» можно реализовать по следующей схеме: к обожженному клинкеру добавляют воду в 1-4 раза больше по массе, чем масса клинкера, с получением суспензии, затем добавляют 10-65%-ный (предпочтительно 32-65%) раствор серной кислоты для доведения рН суспензии для выщелачивания и поддерживают значение рН в диапазоне 2,8-3,3 при 30-60°С в течение 30-90 минут во время выщелачивания.

Полезные эффекты изобретения следующие.

1. Ванадиевые шлаки смешиваются очень равномерно и быстро в печи с псевдоожиженным слоем, в результате достигается очень хорошая массо- и теплопередача, что очевидно снижает время обжига и снижает энергопотребление, стоимость производства на стадии обжига.

2. Поскольку в качестве оборудования для обжига используют печь с псевдоожиженным слоем с газом в качестве подвижного носителя, в нее можно подавать избыточное количество воздуха или воздуха, обогащенного кислородом, для улучшения окисления, сокращения времени обжига и снижения энергопотребления.

3. Емкость печи с псевдоожиженным слоем в 6-10 раз выше, чем емкость вращающейся печи для обжига и многоподовой печи того же объема, следовательно, использование печи с псевдоожиженным слоем существенно повышает производительность одного места оборудования, снижает инвестиции на оборудование, улучшает производственною мощность и экономические показатели предприятия.

4. Вращающаяся печь для обжига, многоподовая печь и шахтная печь либо их основная часть требуют наличия перемещающего механизма, а печь с псевдоожиженным слоем использует в качестве носителя газ, причем только материал перемещается в этом оборудовании, поэтому оно требует меньше движущихся механизмов, в результате существенно снижается количество поломок и упрощается обслуживание этого оборудования, что вносит положительный вклад в организацию и осуществление производства.

Подробное описание изобретения

Ниже изобретение дополнительно проиллюстрировано в следующих примерах. Примеры представлены исключительно в качестве иллюстрации и не ограничивают изобретение.

Пример 1. Влияние массового соотношения CaO/V2O5 ванадиевых шлаков с высоким содержанием кальция на превращение ванадия и эффективность выщелачивания.

400 кг ванадиевых шлаков с высоким содержанием кальция (массовые соотношения CaO/V2O5 показаны в таблице 2) измельчали до размеров частиц менее 0,125 мм, и 95% частиц имели диаметр менее 0,1 мм.

Эти ванадиевые шлаки загружали в Ф100×2500 мм печь с псевдоожиженным слоем, в которой загрузка осуществляется сверху, а выгрузка - снизу. Каменноугольный газ сжигали, смешивали с дополнительным количеством воздуха с получением горячего окисляющего воздуха, нагретого до высокой температуры, затем его вводили в печь из нижней части трубопровода печи. Поток горячего воздуха и количество загружаемых ванадиевых шлаков регулировали таким образом, чтобы поддерживать наилучшее состояние перемешивания ванадиевых шлаков в печи, средняя температура в печи с псевдоожиженным слоем составляла 900°С и среднее время нахождения ванадиевых шлаков в печи составляло 30 минут. Обожженный клинкер выгружали из отверстия в нижней части печи с псевдоожиженным слоем, быстро охлаждали и измельчали до размеров частиц менее 40 меш, добавляли воду, количество которой превышало количество клинкера по массе в 3 раза для получения суспензии, затем добавляли 65%-ной серной кислоты для доведения значения рН раствора для выщелачивания до 2,8-3,3 при 30-60°С в течение 60 минут в процессе выщелачивания. Осадок фильтровали, промывали и сушили для анализа содержания ванадия и определения эффективности выщелачивания ванадиевых шлаков с высоким содержанием кальция. Результаты представлены в таблице 2.

Таблица 2 СаО/V2О5 Превращение ванадия и эффективность выщелачивания, % 0,52 76,40 0,66 80,03 0,80 89,89 0,91 86,24 0,98 88,15 1,19 84,23 1,36 71,72 2,61 66,55

Из таблицы 2 видно, что эффективность обжига является наилучшей, когда соотношение CaO/V2O5 ванадиевых шлаков с высоким содержанием кальция составляет 0,8-1,19, и эффективность обжига-выщелачивания ванадиевых шлаков с высоким содержанием кальция снижается, когда соотношение СаО/V2О5 составляет менее 0,66 и более 1,19.

Пример 2. Получение V2O5 из ванадиевых шлаков с высоким содержанием кальция

400 кг ванадиевых шлаков с высоким содержанием кальция (массовое соотношение CaO/V2O5 0,91 и содержание V2O5 11,54%) измельчали до размеров частиц менее 0,125 мм, и 95% частиц имели диаметр менее 0,1 мм.

Эти ванадиевые шлаки загружали в Ф100×2500 мм печь с псевдоожиженным слоем, в которой загрузка осуществляется сверху, а выгрузка - снизу. Каменноугольный газ сжигали, смешивали с дополнительным количеством воздуха с получением горячего окисляющего воздуха, нагретого до высокой температуры, затем его вводили в печь из нижней части трубопровода печи. Поток горячего воздуха и количество загружаемых ванадиевых шлаков регулировали таким образом, чтобы поддерживать наилучшее состояние перемешивания ванадиевых шлаков в печи, средняя температура в печи с псевдоожиженным слоем составляла 900°С и среднее время нахождения ванадиевых шлаков в печи составляло 30 минут.

Обожженный клинкер выгружали из отверстия в нижней части печи с псевдоожиженным слоем, быстро охлаждали и измельчали до размеров частиц менее 40 меш. К клинкеру (200 г) добавляли воду, количество которой превышало количество клинкера по массе в 3 раза для получения суспензии, затем добавляли 65%-ной серной кислоты для доведения значения рН раствора для выщелачивания до 2,8-3,3 при 30-60°С в течение 60 минут в процессе выщелачивания. Осадок фильтровали, промывали и сушили для анализа содержания ванадия и определения эффективности выщелачивания ванадиевых шлаков с высоким содержанием кальция, которая составила 87,19%.

рН фильтрата доводили до 2,0 серной кислотой, затем фильтрат нагревали до кипения, выдерживали 60 минут и фильтровали, осадок промывали, сушили и прокаливали с получением 29,49 г V2O5 с чистотой 94,01%.

Пример 3. Получение V2O5 из ванадиевых шлаков с высоким содержанием кальция.

500 кг ванадиевых шлаков с высоким содержанием кальция (массовое соотношение CaO/V2O5 0,66 и содержание V2O5 12,84%) измельчали до размеров частиц менее 0,125 мм, и 95% частиц имели диаметр менее 0,1 мм.

Эти ванадиевые шлаки загружали в Ф100×2500 мм печь с псевдоожиженным слоем, в которой загрузка осуществляется сверху, а выгрузка - снизу. Каменноугольный газ сжигали, смешивали с дополнительным количеством воздуха с получением горячего окисляющего воздуха, нагретого до высокой температуры, затем его вводили в печь из нижней части трубопровода печи. Поток горячего воздуха и количество загружаемых ванадиевых шлаков регулировали таким образом, чтобы поддерживать наилучшее состояние перемешивания ванадиевых шлаков в печи, средняя температура в печи с псевдоожиженным слоем составляла 850°С и среднее время нахождения ванадиевых шлаков в печи составляло 150 минут.

Обожженный клинкер выгружали из отверстия в нижней части печи с псевдоожиженным слоем, быстро охлаждали и измельчали до размеров частиц менее 40 меш. К клинкеру (400 г) добавляли воду, количество которой превышало количество клинкера по массе в 4 раза, для получения суспензии, затем добавляли 65%-ной серной кислоты для доведения значения рН раствора для выщелачивания до 2,8-3,3 при 30-60°С в течение 30 минут в процессе выщелачивания. Осадок фильтровали, промывали и сушили для анализа содержания ванадия и определения эффективности выщелачивания ванадиевых шлаков с высоким содержанием кальция, которая составила 84,74%.

рН фильтрата доводили до 2,0 серной кислотой, затем фильтрат нагревали до кипения, выдерживали 60 минут и фильтровали, осадок промывали, сушили и прокаливали с получением 44,57 г V2О5 с чистотой 93,2%.

Пример 4. Получение V2O5 из ванадиевых шлаков с высоким содержанием кальция

300 кг ванадиевых шлаков с высоким содержанием кальция (массовое соотношение СаО/V2О5 0,7 и содержание V2O5 12,68%) измельчали до размеров частиц менее 0,1 мм.

Эти ванадиевые шлаки загружали в Ф100×2500 мм печь с псевдоожиженным слоем, в которой загрузка осуществляется сверху, а выгрузка - снизу. Каменноугольный газ сжигали, смешивали с дополнительным количеством воздуха с получением горячего окисляющего воздуха, нагретого до высокой температуры, затем его вводили в печь из нижней части трубопровода печи. Поток горячего воздуха и количество загружаемых ванадиевых шлаков регулировали таким образом, чтобы поддерживать наилучшее состояние перемешивания ванадиевых шлаков в печи, средняя температура в печи с псевдоожиженным слоем составляла 930°С и среднее время нахождения ванадиевых шлаков в печи составляло 90 минут.

Обожженный клинкер выгружали из отверстия в нижней части печи с псевдоожиженным слоем, быстро охлаждали и измельчали до размеров частиц менее 40 меш. К клинкеру (200 г) добавляли воду, количество которой превышало количество клинкера по массе в 2 раза, для получения суспензии, затем добавляли 32% серной кислоты для доведения значения рН раствора для выщелачивания до 2,8-3,3 при 30-60°С в течение 30 минут в процессе выщелачивания. Осадок фильтровали, промывали и сушили для анализа содержания ванадия и определения эффективности выщелачивания ванадиевых шлаков с высоким содержанием кальция, которая составила 85,18%.

рН фильтрата доводили до 2,0 серной кислотой, затем фильтрат нагревали до кипения, выдерживали 60 минут и фильтровали, осадок промывали, сушили и прокаливали с получением 21,89 г V2O5 с чистотой 93,65%.

Похожие патенты RU2441083C1

название год авторы номер документа
СПОСОБ ПРИГОТОВЛЕНИЯ ОКСИДА ВАНАДИЯ 2014
  • Фу Цзыби
  • Сунь Чаохуэй
  • Ван Биньбинь
  • Чжан Линь
  • Хэ Вэньи
  • Шэнь Бяо
RU2562989C1
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ ВАНАДИЕВОГО ШЛАКА С ВЫСОКИМ СОДЕРЖАНИЕМ КАЛЬЦИЯ И ФОСФОРА 2019
  • Хэ, Вэньи
  • Пэн, И
  • Чэнь, Янь
  • Шэнь, Бяо
RU2743355C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА ВАНАДИЯ 2009
  • Пэн И
  • Чжоу Ипин
  • Бянь У
  • Сунь Чаохуэй
  • Чжан Фан
  • Фу Зиби
RU2454369C1
СПОСОБ ДВУХСТАДИЙНОГО КАЛЬЦИНИРУЮЩЕГО ОБЖИГА ВАНАДИЙСОДЕРЖАЩЕГО МАТЕРИАЛА 2015
  • Пэн, И.
  • Хе, Вэньйи
  • Шэнь, Бяо
  • Лыу, Вухань
  • Е, Лу
  • Лу, Цзаолин
  • Чжу, Гуаньгцзинь
  • Ян, Бин
  • Лыу, Хуицянь
RU2607292C2
СПОСОБ КАЛЬЦИНИРУЮЩЕГО ОБЖИГА ВАНАДИЙСОДЕРЖАЩЕГО МАТЕРИАЛА 2015
  • Пэн, И.
  • Хе, Вэньйн
  • Шэнь, Бяо
  • Лыу, Вухань
  • Е, Лу
  • Лу, Цзаолин
  • Чжу, Гуаньгцзинь
  • Ян, Бин
  • Лыу, Хуицянь
RU2607290C2
Способ извлечения ванадия из ванадиевого шлака посредством обжига с композитом на основе кальция и марганца 2021
  • Ли, Мин
  • Пэн, И
  • Ду, Гуанчао
  • Чэнь, Янь
  • Шэнь, Бяо
  • У, Цзиньшу
RU2793681C2
СПОСОБ ПОЛУЧЕНИЯ ВАНАДИЕВО-ХРОМОВОГО СПЛАВА ПУТЕМ ИЗВЛЕЧЕНИЯ ВАНАДИЯ ИЗ ВАНАДИЕВО-ХРОМОВОГО ШЛАКА ПОСРЕДСТВОМ ОБЖИГА И КИСЛОТНОГО ВЫЩЕЛАЧИВАНИЯ 2021
  • Ли, Минь
  • Пэн, И
  • Шэнь, Бяо
  • Цзянь, Лин
  • Чэнь, Лянь
RU2792060C1
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА ВАНАДИЯ С ИСПОЛЬЗОВАНИЕМ ЭКСТРАКЦИИ 2009
  • Пэн И
  • Бянь У
  • Ван Цзин
  • Ван Сяоцзянь
  • Пань Пин
  • Чжоу Ипин
  • Лю Ухан
  • Чжан Фан
  • Ляо Дайхуа
  • Сан Чаохуэй
  • Чжоу Цзунцюань
  • Пэн Минфу
RU2456241C2
СПОСОБ ВЫДЕЛЕНИЯ ВАНАДИЯ И ХРОМА ИЗ ВАНАДИЕВО-ХРОМОВОГО ШЛАКА 2019
  • Фу, Зиби
  • Цзянь, Лин
  • Го, Цзикэ
RU2726540C1
СПОСОБ ДВУХСТАДИЙНОГО НАТРИРУЮЩЕГО ОБЖИГА ВАНАДИЙСОДЕРЖАЩЕГО МАТЕРИАЛА 2015
  • Пэн, И
  • Шэнь, Бяо
  • Хе, Вэньйи
  • Е, Лу
  • Лу, Цзаолин
  • Чжу, Гуаньгцзинь
  • Дэн, Сяобо
  • Ван, Сяоджицзянь
RU2607293C2

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ ВАНАДИЕВЫХ ПРОДУКТОВ С ИСПОЛЬЗОВАНИЕМ МЕТОДА ФЛЮИДИЗАЦИИ

Группа изобретений относится к получению ванадиевых продуктов с использованием метода флюидизации. Способ получения ванадиевых продуктов включает получение ванадиевых шлаков с высоким содержанием кальция, имеющих массовое соотношение CaO/V2O5 от 0,5 до 1,4, обжиг полученных ванадиевых шлаков в печи с псевдоожиженным слоем с температурой в печи 850-950°С.Обжиг ведут при средней продолжительности нахождения в печи ванадиевых шлаков 30-150 минут. Затем проводят выщелачивание обожженного клинкера в растворе серной кислоты и получение ванадиевых шлаков из выщелачивающего раствора. Технический результат заключаются в высокой эффективности производства, низких энергозатратах, высокой производительности оборудования, простой реализации массового производства. 15 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 441 083 C1

1. Способ получения ванадиевых продуктов с использованием метода флюидизации, характеризующийся тем, что включает следующие стадии:
a. получение ванадиевых шлаков с высоким содержанием кальция, имеющих массовое соотношение CaO/V2O5 не менее 0,5 и не более 0,7;
b. обжиг ванадиевых шлаков с высоким содержанием кальция в печи с псевдоожиженным слоем с получением обожженного клинкера; и
c. выщелачивание обожженного клинкера в растворе серной кислоты и получение ванадиевых продуктов из выщелачивающего раствора.

2. Способ по п.1, отличающийся тем, что на стадии «а» используют ванадиевые шлаки с высоким содержанием кальция, имеющие массовое соотношение CaO/V2O5 не менее 0,66 и не более 0,7.

3. Способ по любому из пп.1 и 2, отличающийся тем, что на стадии «а» перед загрузкой в печь с псевдоожиженным слоем ванадиевые шлаки с высоким содержанием кальция измельчают до размера частиц менее 0,125 мм, причем более 95% частиц имеют диаметр менее 0,1 мм.

4. Способ по любому из пп.1 и 2, отличающийся тем, что на стадии «b» средняя температура в печи с псевдоожиженным слоем составляет 850-950°С, и средняя продолжительность нахождения в печи ванадиевых шлаков составляет 30-150 мин.

5. Способ по п.4, отличающийся тем, что на стадии «b» средняя температура в печи с псевдоожиженным слоем составляет 880-940°С, и средняя продолжительность нахождения в печи ванадиевых шлаков составляет 50-120 мин.

6. Способ по любому из пп.1 и 2, отличающийся тем, что на стадии «b» сжигают каменноугольный газ, природный газ и нефтяное топливо, затем смешивают с воздухом и подают в печь с псевдоожиженным слоем для нагревания материала при обеспечении достаточной окислительной атмосферы в печи.

7. Способ по любому из пп.1 и 2, отличающийся тем, что на стадии «с» к обожженному клинкеру добавляют воду с получением суспензии, затем добавляют 10-65%-ный раствор серной кислоты для доведения рН раствора для выщелачивания и поддерживают значение рН в диапазоне 2,8-3,3 при температуре 30-60°С в течение 30-90 мин во время выщелачивания, и получают V2O5 из выщелачивающего раствора.

8. Способ по любому из пп.1 и 2, отличающийся тем, что на стадии «с» для доведения рН раствора используют концентрацию серной кислоты 32-65%.

9. Способ получения ванадиевых продуктов с использованием метода флюидизации, характеризующийся тем, что включает следующие стадии:
a. получение ванадиевых шлаков с высоким содержанием кальция, имеющих массовое соотношение CaO/V2O5 не менее 0,7 и не более 1,4;
b. обжиг ванадиевых шлаков с высоким содержанием кальция в печи с псевдоожиженным слоем с получением обожженного клинкера; и
c. выщелачивание обожженного клинкера в растворе серной кислоты и получение ванадиевых шлаков из выщелачивающего раствора.

10. Способ по п.9, отличающийся тем, что на стадии «а» используют ванадиевые шлаки с высоким содержанием кальция, имеющие массовое соотношение CaO/V2O5 не менее 0,7 и не более 1,3.

11. Способ по любому из пп.9 и 10, отличающийся тем, что на стадии «а» перед загрузкой в печь с псевдоожиженным слоем ванадиевые шлаки с высоким содержанием кальция измельчают до размера частиц менее 0,125 мм, причем более 95% частиц имеют диаметр менее 0,1 мм.

12. Способ по любому из пп.9 и 10, отличающийся тем, что на стадии «b» средняя температура в печи с псевдоожиженным слоем составляет 850-950°С, и средняя продолжительность нахождения в печи ванадиевых шлаков составляет 30-150 мин.

13. Способ по п.12, отличающийся тем, что на стадии «b» средняя температура в печи с псевдоожиженным слоем составляет 880-940°С, и средняя продолжительность нахождения в печи ванадиевых шлаков составляет 50-120 мин.

14. Способ по любому из пп.9 и 10, отличающийся тем, что на стадии «b» сжигают каменноугольный газ, природный газ и нефтяное топливо, затем смешивают с воздухом и подают в печь с псевдоожиженным слоем для нагревания материала при обеспечении достаточной окислительной атмосферы в печи.

15. Способ по любому из пп.9 и 10, отличающийся тем, что на стадии «с» к обожженному клинкеру добавляют воду с получением суспензии, затем добавляют 10-65%-ный раствор серной кислоты для доведения рН раствора для выщелачивания и поддерживают значение рН в диапазоне 2,8-3,3 при температуре 30-60°С в течение 30-90 мин во время выщелачивания, и получают V2O5 из выщелачивающего раствора.

16. Способ по любому из пп.9 и 10, отличающийся тем, что на стадии «с» для доведения рН раствора используют концентрацию серной кислоты 32-65%.

Документы, цитированные в отчете о поиске Патент 2012 года RU2441083C1

СПОСОБ ПЕРЕДЕЛА ВАНАДИЕВОГО ЧУГУНА В КОНВЕРТЕРЕ 1998
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Ильин В.И.
  • Чернушевич А.В.
  • Смирнов Л.А.
  • Ровнушкин В.А.
  • Дерябин Ю.А.
  • Кокареко О.Н.
  • Одиноков С.Ф.
RU2136764C1
Способ переработки ванадиевых шлаков 1959
  • Потапов В.И.
  • Слотвинский-Сидак Н.П.
SU127026A1
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ 1997
  • Тарабрин Г.К.
  • Тартаковский И.М.
  • Рабинович Е.М.
  • Бирюкова В.А.
  • Мерзляков Н.Е.
  • Волков В.С.
  • Назаренко Н.Н.
  • Кузьмичев С.Е.
  • Шарафутдинов В.В.
  • Чернявский Г.С.
  • Воронцов Б.А.
  • Фролов А.Т.
  • Сухов Л.Л.
RU2118389C1
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора 1921
  • Андреев Н.Н.
  • Ландсберг Г.С.
SU19A1
Устройство для управления вентилями преобразователя 1973
  • Мельничук Леонид Павлович
  • Новосельцев Александр Викторович
SU542322A1
ВОДОПОДПОРНАЯ ПЛОТИНА 1991
  • Жук В.В.
  • Шведовский П.В.
  • Пчелин В.Н.
RU2026458C1
US 3584995 А, 30.12.1975.

RU 2 441 083 C1

Авторы

Пэн И

Чжоу Ипин

Чжу Шэню

Чжан Фань

Сунь Чжаохуэй

Ван Цзин

Даты

2012-01-27Публикация

2008-10-21Подача