СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ СМАЗОЧНЫХ МАСЕЛ Российский патент 2012 года по МПК C10M175/02 

Описание патента на изобретение RU2444563C1

Изобретение относится к области нефтехимии, точнее к восстановлению свойств отработанных смазочных масел, и может быть использовано на маслоочистительных и регенерационных установках.

Известен способ регенерации отработанных масел путем фильтрации, отстаивания и очистки в центробежном поле (SU, авт. св. 1174666). Недостатком способа является низкое качество получаемого регенерационного масла.

Известен способ регенерации отработанного масла, по которому масло фильтруют, после фильтрации очищают щелочью и обрабатывают адсорбентом, и после центрифугирования из масла дополнительно удаляют металлические примеси, воду и легкие углеводороды с последующей очисткой масла в электрогидроциклоне и адсорбере с использованием природного адсорбента (RU, патент 2106398). Указанный способ не экономичен и сложен в исполнении.

Известен способ регенерации отработанного масла по упрощенной схеме путем обработки масла и его смесей 15-20%-ным водным раствором метасиликата натрия с модулем 0,5-0,9 в количестве 5-7% от массы отработанного масла при перемешивании в течение 25-30 мин с отстаиванием, центрифугированием и последующим вакуумированием при температуре 80-90°С и остаточном давлении 100 мм рт.ст. в течение 20-30 мин. Однако регенерированное масло имеет недостаточную степень очистки (RU, патент 2206606). Известен способ очистки отработанных смазочных масел путем обработки их деэмульгаторами на основе блок-сополимера окиси этилена и пропилена при перемешивании и нагревании до температуры 85-97°С в присутствии водного раствора щелочи или аммиака, взятого в количестве 0,5-1,0% от массы масла, с последующим отделением шлама (SU, патент 1567615).

Несмотря на достаточную степень очистки масла от примесей, такой способ очистки связан с использованием опасных и вредных вспомогательных материалов - концентрированной щелочи, аммиака.

Известен также способ очистки отработанных масел, включающий стадию нагревания отработанного масла до температуры 65-95°С, контактирование масла с водным раствором соли щелочного металла, который имеет концентрацию 3-10% на массу соли, отделение воды и твердых примесей из масла, введение в смесь деэмульгатора при нагревании и перемешивании до полного деэмульгирования смеси, после отстоя в течение 12-24 ч при температуре 37,7-82°С проводят отделение тонких частиц и оставшейся суспендированной воды из масла, вакуумную разгонку масла и повторную очистку от механических примесей (US, патент 4431524). Процесс осуществляют постадийно, при этом металлические примеси удаляются в несколько этапов, что связано с повышенными энергетическими затратами. Кроме того, возникает проблема с утилизацией отходов, поскольку при сжигании шлама образуются вредные выбросы, а при повторной очистке образуются отходы, идущие в накопители. Наиболее близким к предлагаемому способу регенерации отработанного смазочного масла является способ по патенту RU, №2133262 (прототип), по которому для регенерации отработанные смазочные масла обрабатывают при нагревании до температуры 80-90°С и перемешивании водным раствором соли щелочного металла, взятого в количестве 0,2-0,6% от массы масла, в течение 15-30 мин, продолжая поддерживать температуру 80-90°С. Затем в смесь добавляют водный раствор мыла в количестве 0,3-0,5% от массы масла. Продолжительность реакции 30-60 мин. Затем в смесь вводят водный раствор коагулянта в количестве 0,15-0,30% от массы масла.

Смесь перемешивают в течение 15-30 мин до полного эмульгирования. После отстоя и охлаждения отделяют шлам и проводят разгонку выделенного масла. Указанный способ-прототип обеспечивает сбор отработанных масел по маркам на установках, применяемых для малотоннажных производств, значительно упрощая, удешевляя и обеспечивая экологически более безопасную регенерацию отработанных масел.

С целью ускорения процесса деэмульгации и коагуляции примесей и последующего разделения выделенного масла на фракции, а также улучшения качества получаемого продукта предложено после обработки отработанного масла водным раствором соли щелочного металла добавлять в полученную смесь 0,3-0,4% от массы обрабатываемого масла литиевой, натриевой или калиевой соли перфторалкоксиперфторкарбоновой кислоты, а затем 0,2%-ный водный раствор катионоактивного органического коагулянта.

Получение предлагаемых солей перфторалкоксиперфторкарбоновой кислоты

[CF3-CF2-CF2-O-[CF(CF3)-CF2-O-]nCF(CF3)-COO]mMe и их свойства описаны нами в следующих источниках информации.

Синтез и антикоррозионная активность некоторых солей перфторполиоксаполипропенкарбоновых кислот / Л.М.Попова, Я.В.Зачиняев, А.Ю.Гришина, С.В.Вершилов, Е.А.Ганкин, Н.А.Рябинин, А.И.Гинак // Журн. прикл. химии. - 1994. Вып.5. - С.875-876.

Попова Л.М., Зачиняев Я.В. Синтез солей перфторполиоксаполипропиленкарбоновых кислот // Новые технологии и материалы, научно-технические достижения в хим. промышленности. - 1996. - Вып.1. - С.1-4.

Попова Л.М., Зачиняев Я.В. Взаимодействие перфторполиоксаполипропенкарбоновых кислот с карбонатами металлов и их фторангидридов с 3-амино-1,2,4-триазолом // Латв. хим. журн. - 1995. - №5-6. - С.101-104.

Процесс осуществляют следующим образом. Отработанное смазочное масло при перемешивании и нагревании до температуры 90°С обрабатывают 0,4-0,6%-ным от массы масла водным раствором силиката или карбоната лития, или натрия, или калия. При этом из отработанного масла выделяются металлические загрязнения, полярные соединения, твердые частицы, а также нейтрализуются кислоты, присутствующие в масле. Продолжая перемешивание и поддерживая температуру 90°С, в смесь добавляют 0,3-0,4% (от массы масла) водного раствора литиевой, или натриевой, или калиевой соли перфторалкоксиперфторкарбоновой кислоты, которая адсорбирует смолистые вещества, содержащиеся в отработанном масле, а также переводит вглубь объема мелкие частицы, стабилизирующие эмульсию. Затем в смесь добавляют катионоактивный органический коагулянт в виде водного раствора при температуре 90°С и перемешивании в количестве 0,2% от массы масла, который склонен к понижению температуры желатинизации в присутствии солей металлов. После отстоя и охлаждения смесь разделяется на четыре фазы: механические частицы, вода, шлам и масло. Механические частицы вместе с отработанным после перколяции сорбентом, составляющие около 0,5 мас.%, после выжигания направляют в отвал. Вода составляет 5 мас.%, имеет pH 9 (щелочная среда), после очистки через фильтр может повторно использоваться в процессе регенерации или технических целей, например для мойки деталей. Шлам составляет около 5% мас. и представляет собой коллоидную систему, включающую масло, мелкодисперсные частицы углерода, смолистые вещества, ПАВ, продукты деструкции присадок, полимерные вещества и воду. Благодаря своим свойствам может использоваться для смазки рельсов, подкрановых путей, стрелочных переводов, для пропитки железнодорожных шпал, столбов, мостовых брусьев. Масло составляет около 90% мас., подвергается сепарации, отгонке легкокипящих компонентов (воды, топлива), а затем перколяции известными способами и после добавления присадок (легирующих компонентов) направляется в товарную емкость. Полученный после отгонки из дизельных моторных масел газойль (около 5 мас.%) может использоваться как печное топливо. При данном способе регенерации отработанных смазочных масел выбросы в атмосферу ограничены испарениями с нагретого до 90°С масла и выхлопом из вакуумного насоса, после очистки от масляного тумана соответствуют требованиям к селитебной зоне прилегающих районов города.

Использование солей щелочных металлов перфторалкоксиперфторкарбоновой кислоты в процессе регенерации отработанных моторных масел, в отличие от мыла, не создает стойких эмульсий, происходит быстрая деэмульгация и коагуляция примесей, образовавшихся в процессе работы масла. За счет отделения влаги и коагуляции различных примесей и смол, образовавшихся в процессе эксплуатации масла, сокращается время разделения на фракции и значительно улучшается качество получаемого продукта, не требуется дальнейшей сепарации. Коагуляция в водном растворе способствует быстрому разделению на фракции (плотность отслоившегося раствора меньше очищенного масла).

Промышленная применимость предлагаемого способа иллюстрируется следующими примерами

Пример 1.

630 кг отработанного дизельного масла М-14-В2, предварительно нагретого до 90°С в реакторе периодического действия, при перемешивании контактируют с 2,52 кг электролита (в виде водного раствора карбоната натрия или калия с концентрацией 5%) в течение 20 мин. Продолжая перемешивание и поддерживая температуру 90°С в смесь, добавляют 1,89 кг натриевой соли перфторалкоксиперфторкарбоновой кислоты (в виде водного раствора с концентрацией 20%). Время обработки составляет 45 мин. Поддерживая температуру смеси 90°С и перемешивая, в смесь добавляют 1,26 кг органического коагулянта (в виде водного раствора катионоактивного сополимера акриламида АК-636Р с концентрацией 9-10%). Время перемешивания 30 мин. Полученная смесь отстаивается в течение 20 ч при 80°С. Механические частицы, вода и шлам сливают из нижней части реактора в шламосборник. Масляную фазу подвергают сепарации, отгонке дизельного топлива в роторном (пленочном) испарителе, перколяции и после введения присадок (легирующих компонентов) направляют в товарную емкость. В Табл.1 представлены основные физико-химические характеристики отработанного дизельного масла до и после регенерации предлагаемым способом. Выход целевого продукта - регенерированного масла - 570 кг (90,5%).

Пример 2.

910 кг отработанного дизельного масла М-14-В2, предварительно нагретого до 90°С в реакторе периодического действия, при перемешивании контактируют с 3,64 кг электролита (в виде водного раствора силиката натрия или калия с концентрацией 6%) в течение 20 мин. Продолжая перемешивание и поддерживая температуру 90°С, в смесь добавляют 2,73 кг калиевой соли перфторалкоксиперфторкарбоновой кислоты (в виде водного раствора с концентрацией 20%). Время обработки 45 мин. Поддерживая температуру смеси 90°С и перемешивая, в смесь вводят 1,82 кг органического коагулянта (в виде водного раствора катионоактивного сополимера акриламида АК-636Р с концентрацией 10%). Время перемешивания 30 мин. Полученную смесь отстаивают в течение 20 ч при 80°С. Механические частицы, воду и шлам сливают из нижней части реактора в шламосборник. Масляная фаза подвергается сепарации, отгонке дизельного топлива в роторном испарителе, перколяции и после введения присадок направляется в товарную емкость.

В Табл.1 представлены основные физико-химические характеристики отработанного дизельного масла до и после регенерации предлагаемым способом. Выход целевого продукта - регенерированного дизельного масла - 813 кг (89,3%).

Пример 3.

328 кг отработанного турбинного масла Тп-22с, предварительно нагретого до 90°С в проточном электронагревателе, при перекачке на кольцо в потоке последовательно с интервалом 20-30 мин контактирует с 1,3 кг электролита (соли щелочного металла) (в виде водного раствора карбоната или силиката натрия с концентрацией 5%), 0,98 кг литиевой соли перфторалкоксиперфторкарбоновой кислоты (в виде водного раствора с концентрацией 20%) и 0,66 кг органического коагулянта (в виде водного раствора катионоактивного сополимера акриламида АК-636Р с концентрацией 10%). Полученная смесь отстаивается в течение 12 часов. Механические частицы, вода и шлам сливаются в шламосборник. Масляная фаза подвергается сепарации, сушке в вакуумном баке-контейнере и фильтрации. После введения присадок масло направляется в товарную емкость.

В Табл.2 представлены основные физико-химические характеристики отработанного турбинного масла до и после регенерации предлагаемым способом. Выход целевого продукта - регенерированное масло - 295 кг (89,9%).

Пример 4.

440 кг отработанного турбинного масла Тп-22с, предварительно нагретого до 90°С в проточном электронагревателе, при перекачке на кольцо в потоке последовательно с интервалом 20-30 мин контактирует с 1,76 кг электролита (соли щелочного металла) (в виде водного раствора карбоната лития или калия с концентрацией 5%), 1,32 кг калиевой соли перфторалкоксиперфторкарбоновой кислоты (в виде водного раствора с концентрацией 20%) и 0,88 кг органического коагулянта (в виде водного раствора катионоактивного сополимера акриламида АК-636Р с концентрацией 10%). Полученная смесь отстаивается в течение 12 часов. Механические частицы, вода и шлам сливаются в шламосборник. Масляная фаза подвергается сепарации, сушке в вакуумном баке-контейнере и фильтрации. После введения присадок регенерированное масло направляется в товарную емкость.

В Табл.2 представлены основные физико-химические характеристики отработанного турбинного масла до и после регенерации предлагаемым способом. Выход целевого продукта - регенерированное масло - 402 кг (91,4%). Предлагаемый способ может быть использован на установках, применяемых для малотоннажных производств (непосредственно на предприятии, в депо или в цехе), где обеспечивается сбор отработанных масел по маркам (сортам), значительно упрощая, удешевляя и обеспечивая экологически безопасную регенерацию отработанных масел.

Таблица 1 Показатели качества отработанного смазочного масла М-14-В2 после регенерации предлагаемым способом Наименование показателей Требования к маслу М-14-В2 согласно ТУ 32-ЦТ-647-80 Показатели отработанного масла М-14-В2 Показатели регенерированного масла М-14-В2 Пример 1 Пример 2 1 2 3 4 5 Кинематическая 13,5…14,5 10,9 13,7 14.1 вязкость, сСт при 100°С, в пределах 85 77 86 85 50°С, не менее Кислотное число (без присадок), мг KOH/г, не более 0,05 0,08 0,04 0,04 Зольность масла (с присадками), 1,0 1,0 1,0 1,0 %, не менее Щелочное число, мг HCl/г, не менее 2,2 1,42 3,9 4,4 Коксуемость масла (без 0,8 0,7 0,5 0,4 присадок), %, не более Содержание водорастворимых Щелочная От нейтральной Щелочная Щелочная кислот и щелочей реакция до щелочной реакция реакция Массовая доля механических примесей, % - без присадок Отсутствие 0,01 Отсутствие Отсутствие - с присадками, не более 0,015 0,13 0,005 0,008 Содержание воды в масле, не более Следы Следы Отсутствие Отсутствие Температура вспышки 200 160 210 220 в открытом тигле, °С, не ниже Температура застывания, °С, не выше -15 -10 -15 -15 Содержание серы в масле (без 1,1 0,6 0,2 0,3 присадок), %, не более Плотность масла 0,9150 0,9045 0,9050 0,9095 при 20°С, г/см3, не более

Таблица 2 Показатели качества турбинного масла Тп-22с отработанного и регенерированного предлагаемым способом Наименование показателей Требования к маслу Тп-22с согласно ТУ 381-01821-83 Показатели отработанного масла Тп-22с Показатели регенерированного масла Тп-22с Пример 3 Пример 4 Кинематическая вязкость, мм2 20-23 15,4 21,9 22,2 при 50°С Индекс вязкости, 90 90 90 90 не менее Температура вспышки в открытом тигле, >186 160 196 190 °С, не ниже Кислотное число, мг KOH/г, не более 0,10 0,42 0,02 0,03 Стабильность масла против окисления Отсутствие Отсутствие Отсутствие Отсутствие (содержание осадка, %, не более) Содержание в масле, %, не более: - воды Отсутствие 0,23 Отсутствие Отсутствие водорастворимых кислот и щелочей Отсутствие Отсутствие Отсутствие Отсутствие - механических примесей, % Отсутствие 0,2 Отсутствие Отсутствие Коррозия на медной пластинке Отсутствие Отсутствие Отсутствие Отсутствие (3 ч, 100°С) Цветность, ед. ЦНТ, не более 2,5 2,5 2,5 2,5

Похожие патенты RU2444563C1

название год авторы номер документа
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ СМАЗОЧНЫХ МАСЕЛ 1997
  • Маслов Н.Н.
  • Красненко А.Ф.
  • Пучков Н.В.
  • Кузьмина Е.А.
RU2133262C1
Способ регенерации огнестойких синтетических турбинных масел на основе сложных эфиров фосфорной кислоты 2016
  • Акулич Раиса Васильевна
RU2635542C1
Способ регенерации огнестойких синтетических турбинных масел на основе сложных эфиров фосфорной кислоты 2016
  • Галяткин Александр Иванович
  • Сидорина Наталья Владимировна
RU2735224C1
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННОЙ ВОДОЭМУЛЬСИОННОЙ СМАЗОЧНО-ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ 2000
  • Энглин А.Б.
  • Широкова Г.Б.
  • Непеина О.В.
  • Бычкова Г.С.
  • Свинцов С.С.
  • Уваров С.В.
  • Беляев В.И.
  • Соломенцев Н.С.
RU2177984C1
СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ НЕФТЯНЫХ МАСЕЛ И ИХ СМЕСЕЙ 2002
  • Михеева Э.А.
RU2206606C1
Способ регенерации отработанного триарилфосфатного огнестойкого турбинного масла 2020
  • Крон Татьяна Евгеньевна
  • Карчевская Ольга Георгиевна
  • Корнеева Галина Александровна
  • Болотов Павел Михайлович
  • Миллер Вероника Константиновна
  • Руш Сергей Николаевич
  • Марочкин Дмитрий Вячеславович
  • Носков Юрий Геннадьевич
RU2750729C1
Промывочный раствор для регенерации отработанного огнестойкого триарилфосфатного турбинного масла и способ регенерации отработанного огнестойкого турбинного масла с его использованием 2018
  • Носков Юрий Геннадьевич
  • Корнеева Галина Александровна
  • Крон Татьяна Евгеньевна
  • Болотов Павел Михайлович
  • Карчевская Ольга Георгиевна
  • Марочкин Дмитрий Вячеславович
  • Руш Сергей Николаевич
RU2674992C1
Способ регенерации маслосодержащих производственных отходов 1980
  • Шкловская Любовь Ароновна
  • Вербицкая Людмила Михайловна
  • Симакова Галина Федоровна
  • Белова Евдокия Прокофьевна
  • Драченин Евгений Алексеевич
  • Брай Илья Владимирович
  • Михеева Элеонора Александровна
  • Бурденюк Людмила Николаевна
  • Разумовский Владимир Васильевич
SU979496A1
СПОСОБ ОЧИСТКИ ФТОРХЛОРУГЛЕРОДНЫХ ЖИДКОСТЕЙ 1991
  • Власов Г.А.
  • Фролов К.И.
  • Буравцева Г.И.
  • Пономарева О.Я.
  • Шумкова Т.А.
RU2015954C1
СПОСОБ РЕГЕНЕРАЦИИ МАСЕЛ 2004
  • Чередниченко О.А.
  • Чередниченко Р.О.
  • Чередниченко С.О.
  • Школьников В.М.
  • Школьников А.В.
RU2266316C1

Реферат патента 2012 года СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ СМАЗОЧНЫХ МАСЕЛ

Использование: на маслоочистительных и регенерационных установках для восстановления свойств отработанных смазочных масел. Сущность: отработанное масло нагревают до 90°С, затем при перемешивании обрабатывают водным раствором электролита (силиката и карбоната лития, натрия и калия), взятым в количестве 0,4-0,6% от массы масла. Затем в смесь вводят 0,3-0,4% от массы масла водного раствора литиевой, натриевой или калийной соли перфторалкоксиперфторкарбоновой кислоты и органический катионоактивный коагулянт с последующим разделением шлама и выделенного масла. Технический результат - повышение степени очистки и экологической безопасности способа. 2 табл., 4 пр.

Формула изобретения RU 2 444 563 C1

Способ регенерации отработанных смазочных масел, включающий их нагрев до 90°С, обработку водным раствором силиката или карбоната лития, натрия или калия, взятого в количестве 0,4-0,6% от массы масла, при нагревании и перемешивании, с последующим добавлением водного раствора органического катионоактивного коагулянта, отделением шлама и выделенного масла, отличающийся тем, что перед добавлением коагулянта в смесь вводят при той же температуре и перемешивании водный раствор литиевой, натриевой или калиевой соли перфторалкоксиперфторкарбоновой кислоты в количестве 0,3-0,4% от массы масла.

Документы, цитированные в отчете о поиске Патент 2012 года RU2444563C1

СПОСОБ РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ СМАЗОЧНЫХ МАСЕЛ 1997
  • Маслов Н.Н.
  • Красненко А.Ф.
  • Пучков Н.В.
  • Кузьмина Е.А.
RU2133262C1
WO 03062356 A2, 31.07.2003
GB 2075047 A, 11.11.1981
US 4522729 A, 11.06.1985
US 4491515 A, 01.01.1985.

RU 2 444 563 C1

Авторы

Зачиняев Ярослав Васильевич

Сергиенко Юрий Владимирович

Иванюк Сергей Викторович

Титова Тамила Семеновна

Межидов Мансур Белалович

Даты

2012-03-10Публикация

2010-07-08Подача