КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ Российский патент 2012 года по МПК C04B28/02 B82B3/00 C04B111/20 

Описание патента на изобретение RU2447036C1

Изобретение относится к составам на основе минеральных вяжущих, таких как цемент, и может быть использовано в промышленности строительных материалов при изготовлении бетона, фибробетона, цементно-волокнистых строительных материалов, шифера, штукатурки, отделочных покрытий, в том числе лепнины и т.п.

Известна композиция для получения строительного материала [пат. RU №2345968, МПК С04В 28/02 В82В 1/00 В82В 3/00 С04В 111/20, опубл. 10.02.2009 г.], содержащая цемент, песок, воду и углеродный наноматериал - сажу, полученную электродуговым методом и содержащую 7% углеродных нанотрубок, при следующем соотношении компонентов, мас.%:

Цемент 20-30 Наполнитель 50-70 Указанный углеродный наноматериал 1-2 Вода Остальное

Сажу, содержащую 7% углеродных нанотрубок, получали из графита марки МПГ-4 на установке в массовых количествах (порядок 1 кг/час) при следующих основных параметрах: сила тока 1150 А, напряжение 42 В, диаметр анода 30 мм электродуговым методом, изложенным в статье Грушко Ю.С., Егоров В.М., Зимкин И.Н., Орлова Т.С., Смирнов Б.И. Некоторые физико-механические свойства катодных депозитов, образующихся при получении фуллеренов дуговым способом [журнал «Физика твердого тела». - 1995. - Т.37. - N6. - С.1838-1842].

Недостатком известной композиции является ее высокая стоимость вследствие энергозатратности и неэкономичности метода получении сажи.

Наиболее близкой по совокупности существенных признаков к заявляемой композиции является композиция для получения строительных материалов [пат. RU №2233254, МПК С04В 28/02 С04В 111:20, опубл. 27.07.2004 г.] на основе минерального вяжущего, включающая минеральное вяжущее, выбранное из группы, включающей цемент, известь, гипс или их смеси и воду, дополнительно содержит углеродные кластеры фуллероидного типа с числом атомов углерода 36 и более при следующем соотношении компонентов в композиции (мас.%): минеральное вяжущее 33÷77; углеродные кластеры фуллероидного типа 0,0001÷2,0; вода остальное. В качестве углеродных кластеров фуллероидного типа композиция может содержать полидисперсные углеродные нанотрубки. В качестве углеродных кластеров фуллероидного типа она может содержать полиэдральные многослойные углеродные наноструктуры с межслоевым расстоянием 0,34÷0,36 нм и размером частиц 60÷200 нм. В качестве углеродных кластеров фуллероидного типа композиция может содержать смесь полидисперсных углеродных нанотрубок и фуллерена С60. Композиция может дополнительно содержать технологические добавки, взятые в количестве 100÷250 мас.ч. на 100 мас.ч. минерального вяжущего.

Полиэдральные многослойные углеродные наноструктуры с межслоевым расстоянием 0,34÷0,36 нм и размером частиц 60÷200 нм выделены из корки катодного депозита, полученного в пламени дугового разряда в атмосфере гелия путем последовательных операций окисления в газовой и в жидкой фазе, и идентифицированы им.

Недостатком данной композиции является ее высокая стоимость вследствие энергозатратности методов получения углеродных кластеров фуллероидного типа, а также недостаточное увеличение прочности на сжатие (в 1,3 раза) бетона.

Задачей настоящего изобретения является получение высокопрочной композиции строительных материалов при снижении ее стоимости за счет снижения энергозатратности метода получения углеродных кластеров.

Технический результат заключается в повышении прочности строительных материалов.

Поставленная задача достигается тем, что композиция для получения строительных материалов, содержащая цемент, песок, воду и углеродные кластеры, содержащие многослойные углеродные наноструктуры с межслоевым расстоянием 0,34÷0,36 нм и размером частиц 60÷200 нм, согласно изобретению в качестве указанных углеродных кластеров содержит кавитационно-активированный углеродосодержащий материал (КАУМ), содержащий полидисперсные углеродные трубчатые образования размерами 10-6÷10-5 м, гидрированные углеродные фрактальные структуры размерами 10-8÷10-5 м и активный рыхлый углерод с размерами дефектных микрокристаллитов графита, примерно равными 10 Ǻ, при следующем соотношении компонентов в композиции, мас.%:

Минеральное вяжущее (цемент) 25-50 Песок 30-60 Кавитационно-активированный углеродосодержащий материал (КАУМ) 0,024-0,64 Вода Остальное

Изобретение поясняется чертежами, где:

на фиг.1 представлена фотография кавитационно-активированного углеродосодержащего материала, полученная с помощью электронного микроскопа;

на фиг.2 - фотография кавитационно-активированного углеродосодержащего материала, полученная с помощью оптического микроскопа;

на фиг.3 представлены морфологии композиции для получения строительных материалов без кавитационно-активированного углеродосодержащего материала (а) и с кавитационно-активированным углеродосодержащим материалом (б).

Кавитационно-активированный углеродосодержащий материал (КАУМ), содержащий многослойные углеродные наноструктуры с межслоевым расстоянием 0,34÷0,36 нм и размером частиц 60÷200 нм, полидисперсные углеродные трубчатые образования размерами 10-6÷10-5 м, гидрированные углеродные фрактальные структуры размерами 10-8÷10-5 м и активный рыхлый углерод с размерами дефектных микрокристаллитов графита, примерно равными 10 Ǻ, получали путем гидродинамической обработки водной суспензии древесной сажи в кавитационном реакторе роторного типа в режиме суперкавитации. Опытным путем было установлено, что в режиме суперкавитации значение числа кавитации σкр составило 0,2 [Кулагин В.А., Вильченко А.П., Кулагина Т.А. Моделирование двухфазных суперкавитационных потоков. - Красноярск: ИПЦ КГТУ. 2001. - 108 с.].

В кавитирующем реакторе роторного типа в режиме суперкавитации (число кавитации σкр=0,2) под действием пульсации кавитационных пузырьков происходит механодеструкция водной суспензии древесной сажи с образованием дефектных сажевых частиц с размерами 10-10÷10-8 и активного рыхлого углерода с размерами дефектных микрокристаллитов графита, примерно равными 10 Ǻ. В результате турбулетного перемешивания активный рыхлый углерод частично взаимодействует с дефектными сажевыми частицами (глобулами) с образованием различных гидрированных агрегатов и ассоциатов: многослойных углеродных наноструктур с межслоевым расстоянием 0,34÷0,36 нм и размером частиц 60÷200 нм, полидисперсных углеродных трубчатых образований размерами 10-6÷10-5 м, гидрированных углеродных фрактальных образований размерами 10-8÷10-5 м. Примеси тяжелых элементов выпадают в осадок, который затем удаляют.

Как видно на фиг.1, многослойные углеродные наноструктуры представляют собой более крупные сфероподобные образования, чем гидрированные углеродные фрактальные структуры. Многослойные углеродные наноструктуры и гидрированные углеродные фрактальные структуры имеют усредненные размеры частиц, равные 11,5·10-8 м и 64,3 10-9 м соответственно. Усредненные размеры частиц полидисперсных углеродных трубчатых образований равны 5,3·10-6 м (см. фиг.2).

Углеродные кластеры вводятся в композицию в виде водной суспензии кавитационно-активированного углеродосодержащего материала (КАУМ).

Повышение прочности строительных материалов обеспечивается тем, что композиция, в которую вводят углеродные кластеры в виде водной суспензии кавитационно-активированного материала (КАУМ), приобретает фибриллярную упрочняющую надмолекулярную структуру цементного камня (см. фиг.3, б). Это происходит вследствие того, что при введении данной суспензии в композицию твердая дисперсная фаза является центром направленной кристаллизации, а жидкая дисперсионная среда (активированная вода) оказывает влияние на кристаллохимические реакции твердения цементного камня. В результате прочность строительного материала повышается в 1,7 раз.

Далее заявляемое изобретение поясняется примерами.

Пример 1 (контрольный). Речной песок в количестве 43 мас.% смешивают с водой в количестве 14 мас.%. В него добавляют портландцемент марки М 400 в количестве 43 мас.%. Получившийся состав тщательно перемешивают до получения однородной массы, которую разливают по формам. Состав отвердевал в течение 28 суток в нормальных условиях.

На полученных образцах определили микротвердость, МПа, с помощью микротвердомера ПМТ-3 по методу Виккерса.

Состав композиции и прочностная характеристика приведены в таблице.

Пример 2. Песок в количестве 43 мас.% смешивают с водной суспензией кавитационно-активированного углеродосодержащего материала (КАУМ) в количестве дисперсной фазы 0,024 мас.%, содержащий многослойные углеродные наноструктуры с усредненным размером частиц 11,5·10-8 м, полидисперсные углеродные трубчатые образования с усредненным размером частиц 5,3·10-6 м, гидрированные углеродные фрактальные структуры с усредненным размером частиц 64,3 10-9 м и активной рыхлый углерод с размерами дефектных микрокристаллитов графита, примерно равными 10 Ǻ.

В него добавляют портландцемент марки М 400 в количестве 43 мас.% и воду в количестве 13,976 мас.%. Получившийся состав тщательно перемешивают до получения однородной массы, которую разливают по формам. Состав отвердевал в течение 28 суток в нормальных условиях.

На полученных образцах определили микротвердость, МПа, с помощью микротвердомера ПМТ-3 по методу Виккерса.

Состав композиции и прочностная характеристика приведены в таблице.

Пример 3. Композицию получали, как в примере 2, при следующем соотношении масс (мас.%):

Песок 43 КАУМ 0,044 Портландцемент 43 Вода 13,956.

Состав композиции и прочностная характеристика приведены в таблице.

Пример 4. Композицию получали, как в примере 2, при следующем соотношении масс (мас.%):

Песок 43 КАУМ 0,064 Портландцемент 43 Вода 13,936.

Состав композиции и прочностная характеристика приведены в таблице.

Пример 5. Композицию получали, как в примере 2, при следующем соотношении масс (мас.%):

Песок 60 КАУМ 0,024 Портландцемент 25 Вода 14,976.

Состав композиции и прочностная характеристика приведены в таблице.

Состав композиции и прочностная характеристика Пример Состав композиции, мас.%: Микротвердость, МПа Портландцемент КАУМ Песок Вода 43 - 43 14,000 45,8 2 43 0,024 43 13,976 50,4 3 43 0,044 43 13,956 75,6 4 43 0,064 43 13,936 46,63 5 25 0,024 60 14,976 56,9

Как видно из таблицы, во всех случаях добавление водной суспензии КАУМ в состав композиции приводит к возрастанию микротвердости полученных образов в сравнении с контрольным образцом. В результате добавления водной суспензии КАУМ в количестве 0,044 мас.% в состав композиции (см. пример 3) значение микротвердости полученных образов, равное 75,6 МПа, больше значения микротвердости контрольного образца в 1,7 раз.

Похожие патенты RU2447036C1

название год авторы номер документа
Наномодификатор строительных материалов 2016
  • Ткачев Алексей Григорьевич
  • Точков Юрий Николаевич
  • Михалева Зоя Алексеевна
  • Панина Татьяна Ивановна
RU2637246C1
ТАМПОНАЖНЫЙ СОСТАВ 2020
  • Ковальчук Влада Станиславовна
  • Николаев Николай Иванович
RU2745980C1
ТАМПОНАЖНЫЙ СОСТАВ 2023
  • Нуцкова Мария Владимировна
  • Алхаззаа Мохаммад
RU2810354C1
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ 2013
  • Фасюра Владимир Николаевич
  • Фасюра Владимир Владимирович
  • Фасюра Дмитрий Владимирович
  • Захваткин Сергей Сергеевич
RU2529973C1
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ СТРОИТЕЛЬНОГО МАТЕРИАЛА 2007
  • Битюцкая Лариса Александровна
  • Лазарев Александр Петрович
  • Соколов Юрий Витальевич
  • Перцев Виктор Тихонович
  • Гончарова Надежда Сергеевна
  • Шишов Сергей Владимирович
RU2345968C2
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ 2000
  • Пономарев А.Н.
  • Ваучский М.Н.
  • Никитин В.А.
  • Прокофьев В.К.
  • Шнитковский А.Ф.
  • Заренков В.А.
  • Захаров И.Д.
  • Добрица Ю.В.
RU2233254C2
СОСТАВ СМЕСИ ДЛЯ ПРОИЗВОДСТВА ПОРОБЕТОНА 2010
  • Бурлов Юрий Александрович
  • Бурлов Иван Юрьевич
  • Бурлов Александр Юрьевич
RU2416588C1
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ НА ОСНОВЕ МИНЕРАЛЬНЫХ ВЯЖУЩИХ 2009
  • Пономарев Андрей Николаевич
  • Юдович Михаил Евгеньевич
RU2436749C2
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ВЫСОКОПРОЧНОГО БЕТОНА 2011
  • Урханова Лариса Алексеевна
  • Буянтуев Сергей Лубсанович
  • Лхасаранов Солбон Александрович
  • Кондратенко Анатолий Сергеевич
RU2466110C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ 2016
  • Демичева Ольга Валентиновна
  • Костюков Владимир Иванович
  • Ковалева Анна Юрьевна
  • Никитин Владимир Александрович
  • Палкин Евгений Алексеевич
  • Летенко Дмитрий Георгиевич
  • Пухаренко Юрий Владимирович
RU2627335C2

Иллюстрации к изобретению RU 2 447 036 C1

Реферат патента 2012 года КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Изобретение относится к составам на основе минеральных вяжущих, таких как портландцемент, и может быть использовано в промышленности строительных материалов при изготовлении бетона, фибробетона, цементно-волокнистых строительных материалов, шифера, штукатурки, отделочных покрытий, лепнины. Технический результат заключается в повышении прочности строительных материалов на сжатие. Композиция для получения строительных материалов содержит цемент, песок, воду и углеродный материал. В качестве углеродного материала композиция содержит водную суспензию кавитационно-активированного углеродосодержащего материала (КАУМ), в состав которого входят многослойные углеродные наноструктуры с межслоевым расстоянием 0,34÷0,36 нм и размером частиц 60÷200 нм, полидисперсные углеродные трубчатые образования размерами 10-6÷10-5 м, гидрированные углеродные фрактальные структуры размерами 10-8÷10-5 м и активный рыхлый углерод с размерами дефектных микрокристаллитов графита, примерно равными 10 Ǻ. 3 ил.,1 табл.

Формула изобретения RU 2 447 036 C1

Композиция для получения строительных материалов, содержащая портландцемент, песок, воду и углеродный материал, отличающаяся тем, что в качестве углеродного материала она содержит водную суспензию кавитационно-активированного углеродосодержащего материала - КАУМ, в состав которого входят многослойные углеродные наноструктуры с межслоевым расстоянием 0,34÷0,36 нм и размером частиц 60÷200 нм, полидисперсные углеродные трубчатые образования размерами 10-6÷10-5 м, гидрированные углеродные фрактальные структуры размерами 10-8÷10-5 м и активный рыхлый углерод с размерами дефектных микрокристаллитов графита, примерно равными 10 Ǻ при следующем соотношении компонентов в композиции, мас.%:
Портландцемент 25÷50 Песок 30÷60 Водная суспензия КАУМ 0,024÷0,64 Вода Остальное

Документы, цитированные в отчете о поиске Патент 2012 года RU2447036C1

КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ 2000
  • Пономарев А.Н.
  • Ваучский М.Н.
  • Никитин В.А.
  • Прокофьев В.К.
  • Шнитковский А.Ф.
  • Заренков В.А.
  • Захаров И.Д.
  • Добрица Ю.В.
RU2233254C2
БЕТОННАЯ СМЕСЬ 2007
  • Пономарев Андрей Николаевич
  • Юдович Михаил Евгеньевич
RU2355656C2
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ СТРОИТЕЛЬНОГО МАТЕРИАЛА 2007
  • Битюцкая Лариса Александровна
  • Лазарев Александр Петрович
  • Соколов Юрий Витальевич
  • Перцев Виктор Тихонович
  • Гончарова Надежда Сергеевна
  • Шишов Сергей Владимирович
RU2345968C2
СЫРЬЕВАЯ СМЕСЬ ДЛЯ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ (ВАРИАНТЫ) 2007
  • Пухаренко Юрий Владимирович
  • Никитин Владимир Александрович
  • Ковалева Анна Юрьевна
  • Аубакирова Ирина Утарбаевна
  • Летенко Дмитрий Георгиевич
RU2388712C2
Коньки 1928
  • Сиромохин В.И.
  • Сиромохин Ф.И.
SU14122A1
CN 101333096 A, 31.12.2008.

RU 2 447 036 C1

Авторы

Кашкина Людмила Васильевна

Кулагин Владимир Алексеевич

Стебелева Олеся Павловна

Кулагина Людмила Владимировна

Даты

2012-04-10Публикация

2010-10-28Подача