ГИДРИРОВАННАЯ БЕТУЛОНОВАЯ КИСЛОТА И ЕЕ АМИДЫ КАК ПРОТИВООПУХОЛЕВЫЕ СРЕДСТВА ТРИТЕРПЕНОВОЙ ПРИРОДЫ Российский патент 2012 года по МПК C07J53/00 C07J63/00 A61P35/00 

Описание патента на изобретение RU2448115C1

Изобретение относится к новому ряду химических соединений, а именно к гидрированной бетулоновой кислоте формулы (1) и ее амидам формулы (2-8):

которые могут быть использованы в медицине в качестве лекарственных средств, обладающих противоопухолевым действием.

Современные схемы лечения различного типа злокачественных опухолей используют хирургические методы в комплексе в высокодозной агрессивной терапией, серьезным недостатком которой является высокая токсичность современных противоопухолевых препаратов в отношении жизненно-важных органов и систем организма. Сопутствующие побочные эффекты снижают эффективность, а в ряде случаев ограничивают применение противоопухолевых средств. Другой проблемой в лечении онкологических заболеваний является проблема остаточного опухолевого клона. Опухолевые клетки, пережившие химиотерапию, обычно проявляют лекарственную устойчивость к широкому кругу препаратов и вызывают рецидив заболевания в более тяжелой форме. В связи с этим актуальной задачей является поиск новых противоопухолевых препаратов, обеспечивающих высокую избирательность и эффективность лечения.

Важным направлением медицинской химии, позволяющим получать новые, эффективные противоопухолевые препараты, является использование синтетических трансформаций растительных метаболитов. Наиболее приемлемым считается исследование растительных метаболитов, о биологической активности которых имеются достоверные сведения и которые являются доступными в настоящее время или станут доступными в ближайшем будущем по мере формирования сырьевой базы. К данному классу соединений относятся тритерпеновые кислоты, широкий спектр биологической активности которых (противовоспалительная, противовирусная, противоопухолевая, иммуностимулирующая и т.д.) приковывает к ним пристальный интерес исследователей.

Задачей изобретения является создание новых эффективных, низкотоксичных лекарственных средств, обладающих противоопухолевым действием и получаемых из доступного растительного сырья.

Поставленная задача решается новыми соединениями тритерпеновой природы, а именно гидрированной бетулоновой кислотой формулы (1) и ее амидами формулы (2-8), которые могут использоваться в качестве противоопухолевых средств.

Из литературных источников известно, что производные тритерпенов, в частности, лупанового ряда перспективны как противовирусные и противоопухолевые препараты [Толстикова Т.Г., Сорокина И.В., Толстиков Г.А., Толстиков А.Г., Флехтер О.Б. // Биоорган. химия, 2006, 32, 291-307]. На примере производных бетулиновой кислоты показана связь структуры и противоопухолевой активности в отношении широкого спектра раковых клеток (IС50 10-6-10-9 М) [Mukherjee R., Kumar V., Srivastava S.K, Agarwal S.K., Burman A.C. // Anti-cancer agents in Medicinal Chemistry, 2006, V.6, P.271-279]. В этой же работе есть примеры того, что гидрированные аналоги зачастую показывают большую активность по сравнению с обычными производными бетулиновой кислоты. Анти-ВИЧ активность 3-O-глутарилдигидробетулина увеличивается минимум на три порядка при переходе от обычного производного бетулина [Kashiwada Y., Sekiya M., Ikeshiro Y., Fujioka Т., Kilgore N.R., Wild C.T., Allaway G.P., Lee K.-H. // Bioorgan. Med. Chem. Lett., 2004, 14, P.5851-5853]. Производные бетулоновой кислоты, содержащие фрагменты ω-аминокислот, являются активными индукторами апоптоза в лейкозных клетках и клетках гепатокарциномы in vitro [Шинтяпина А.Б., Шульц Э.Э., Петренко Н.И., Узенкова Н.В., Толстиков Г.А., Пронкина Н.В., Кожевников B.C., Покровский А.Г. // Биоорган. химия, 2007, 33, 624]. Важной чертой амидов бетулоновой кислоты является то, что амид, например, содержащий фрагмент β-аланина, проявляет антиоксидантную активность и обладает способностью снижать органотоксическое действие противоопухолевых препаратов [Сорокина И.В., Толстикова Т.Г., Жукова Н.А., Петренко Н.И., Шульц Э.Э., Толстиков Г.А. // Докл. АН, 2004, 399, с.274]. Обстоятельством, повышающим привлекательность тритерпенов, является их широкое распространение в природе и во многих случаях относительная простота технологии получения из многотоннажного растительного сырья.

Одним из соединений тритерпеновой природы с ярко выраженными физиологическими свойствами является дигидробетулоновая кислота формулы (1), которая получается окислением дигидробетулина формулы (9). Дигидробетулин формулы (9) получается гидрированием бетулина формулы (10) - широкодоступным сырьем, выделяемым из внешней коры березы семейства Betula [Krasutsky P.A. // Nat. prod. rep., 2006, 23, Р.919-942].

Для достижения поставленной цели мы провели ряд химических модификаций, представленных на схеме 1, Фиг.22. В качестве исходного соединения был взят бетулин (10), полученный экстракцией коры березы бензолом. Гидрирование бетулина (10) водородом в автоклаве над Ni-Ренея давал дигидробетулин (9), который окисляли раствором Физера. Следующим этапом было получение хлорангидрида дигидробетулоновой кислоты (1), который далее использовался без промедления. Взаимодействие хлорангидрида дигидробетулоновой кислоты (1) с двойным избытком соответствующего амина легко приводило к целевым соединениям формулы (2-8) с противоопухолевой активностью.

ИК-спектры записывали на приборе "VECTOR 22" в KBr. Удельное вращение определяли на спектрометре polAAr 3005, концентрации растворов приведены в г/100 мл. Точки плавления определяли на приборе Termosystem FP 900 фирмы Mettler Toledo и на столике Кофлера S 30 A/G (Германия).

Элементный состав полученных веществ определяли из элементного анализа и из масс-спектров высокого разрешения, записанных на приборе DFS (Double Focusing Sector) фирмы Thermo Electron Corporation.

Спектры ЯМР 1Н и 13С регистрировали на спектрометрах AV-400 (рабочие частоты 400.13 MHz для 1Н и 100.61 MHz для 13С) и DRX-500 (500.13 MHz и 125.76 MHz соответственно) фирмы Bruker для растворов веществ в СDСl3. В качестве внутреннего стандарта использовали сигналы растворителя (δH 7.24 и δC 76.9 м.д). Строение полученных соединений устанавливали на основании анализа спектров ЯМР 1Н с привлечением спектров двойного резонанса 1Н-1Н, а также анализа спектров ЯМР 13С с использованием стандартных методик записи спектров в режиме J-модуляции (JMOD), с внерезонансным и селективным подавлением протонов, двумерных спектров гетероядерной 13C-1H корреляции на прямых константах спин-спинового взаимодействия (С-Н COSY, 1JC,H 135 Гц) и двумерных и одномерных спектров гетероядерной 13С-1Н корреляции на дальних константах спин-спинового взаимодействия (COLOC, LRJMD, 2,3JC,H 10 Гц).

Было исследовано влияние заявляемой гидрированной бетулоновой кислоты формулы (1) и ее амидов (2-8) на жизнеспособность клеток карциномных линий человека. Значения CCID гидрированной бетулоновой кислоты (1) и ее амидов (2-8) для различных карциномных линий клеток человека приведены в таблице 1. В качестве препаратов сравнения использовали бетулоновую кислоту (БА) и ее соответствующие амиды (БА1-БА7) (Фиг.23, схема 2 Бетулоновая кислота (БА) и ее производные (БА1-БА7)).

В результате было показано, что заявляемые соединения (1-8) проявляют высокую противоопухолевую активность по отношению ко всем использованным опухолевым клеточным культурам, а именно СЕМ-13, U-937, МТ-4. Показано, что значения ССID50 для соединений (1-8) имеют сходный порядок величины для всех опухолевых клеток и лежат в диапазоне 2.9-69.5 µM. Полученные данные по противоопухолевой активности соединений (1-8) позволяют рассматривать их как перспективные лекарственные агенты. Изобретение иллюстрируется следующими примерами.

Пример 1. Получение луп-20(29)-ен-3β,28-диола (бетулина, 10)

Измельченную кору березы (344 г) кипятят в бензоле (1.6 л) с обратным холодильником 8 ч, далее горячий раствор декантирют. В оставшуюся кору добавляют еще 1 л бензола, кипятят 1 ч, горячий раствор снова декантирют. Выпавший из бензола осадок отфильтровывают, высушивают и получают 52 г бетулина-сырца. После перекристаллизации в изопропаноле получают 38 г бетулина с т.пл. 260-262°С (лит. т.пл. 258-260°C [Hayek // Phytochem. 1989, 28, P.22.]). Выход бетулина на исходную кору составляет 11%.

Пример 2. Получение лупан-3β,28-диола (дигидробетулина, 9)

Гидрирование бетулина (10) проводят аналогично известной методике [Ruzicka L., Brener М., Rey Е. // Helv. Chim. Acta, 1941, 24, P.515-529]. В 5 л автоклав с мешалкой помещают 132 г бетулина (10), 13.2 г Ni-Ренея и 2.5 л этанола, далее все перемешивают в атмосфере водорода (100 атм) при 180°С в течение 14 ч. Освобождаются от катализатора горячим фильтрованием в диоксане, после отгонки растворителя получают 124 г дигидробетулина (9) (выход - 93%). Т.пл. 282-284°С (из спирта). Лит. т.пл. 278-280°С [Ruzicka L., Brener М., Rey Е. // Helv. Chim. Acta, 1941, 24, Р.515-529].

Пример 3. Получение 3-оксо-лупан-28-овой кислоты (дигидробетулоновой кислоты, 1)

Суспензию 10 г (22.5 ммоля) дигидробетулина (9) в 165 мл ледяной уксусной кислоте и 110 мл ацетона охлаждают при 0°С и в течение 1 ч при перемешивании прибавляют свежеприготовленный раствор Физера (11 г, 0.11 моля хромового ангидрида в 12 мл ледяной уксусной кислоты и 15 мл Н2О). Выдерживают при комнатной температуре 3 ч. По окончании реакции добавляют 50 мл метанола, прибавляют 300 мл бензола и 300 мл 10% раствора NaCl. Бензольный слой отделяют, а водный экстрагируют 2×150 мл бензола. Объединенные экстракты промывают 3×200 мл 10% раствором NaCl, сушат MgSO4, осушитель отфильтровывают, бензол отгоняют приблизительно до 100 мл и выливают в 200 мл 5% раствора KОН. Осадок калиевой соли дигидробетулоновой кислоты (1) отфильтровывают и высушивают. Сухую соль растворяют в 50 мл этанола, не растворившуюся часть отфильтровывают, фильтрат выливают в 250 мл 5% раствор НСl. Выделившуюся кислоту (1) отфильтровывают, промывают H2O, высушивают. В итоге получают 5.5 г (54% от теории) дигидробетулоновой кислоты (1). Точка плавления и спектры ЯМР 1Н и 13С соответствуют литературным [Wahab A., Ottosen M., Bachelor F.W. // Can.J.Chem., 1991, 69, P.570-577].

Пример 4. Получение 3-оксо-лупано-28-ил хлорида (хлорангидрида дигидробетулоновой кислоты, 1)

К раствору 5.7 г (12.48 ммоля) дигидробетулоновой кислоты (1) в 70 мл безводного СН2Сl2 добавляют 2.3 мл (26.36 ммоля) оксалилхлорида и выдерживают при комнатной температуре 4 ч. После отгонки растворителя к остатку прибавляют столько же СН2Сl2 и повторно упаривают. Остаток обрабатывают безводным эфиром, осадок отфильтровывают, промывают эфиром, получают 4.6 г хлорангидрида ДГБК с т.пл. 225-232°С (выход - 91%). Хлорангидрид сразу же вводят в дальнейшую реакцию.

Пример 5. Получение амидов гидрированной бетулоновой кислоты (2-8). Общая методика

К раствору 0.5 г (1.05 ммоля) хлорангидрида дигидробетулоновой кислоты (1) в 40 мл сухого CH2Cl2 при перемешивании прибавляют 2.2 ммоля соответствующего амина. Реакционную смесь выдерживали при комнатной температуре 18-20 ч, затем разбавляют CH2Cl2 до 100 мл, промывают 3×20 мл Н2О, высушивают MgSO4, осушитель отфильтровывают, растворитель отгоняют. Остаток перекристаллизовывают либо делят колоночной хроматографией на силикагеле фракции 60-200 мкм фирмы Merk. Элюенты приведены для каждого продукта. Данные спектров ЯМР 13С для синтезированных амидов дигидробетулоиовой кислоты (2-8) в СDСl3 (δ, м.д.) приведены в таблице 2.

Примечания: а) для атомов С(2′,6′) наблюдается широкий сигнал при 46.2 м.д., ХС сигнала С(4′) 24.62 м.д.; b) для атомов С(2′,6′) наблюдается широкий сигнал при 45.6 м.д.; с) для атомов С(2′,6′) соединений (4-6) наблюдаются очень широкие сигналы около 45 м.д.; d) для атомов С(2′,6′) соединения (7) и атомов С(2′,7′) соединения (8) сигналы наблюдать не удается; для соединения (7) ХС дублетных сигналов ароматической части следующие: 128.43 С(10′) и 126.94 С(11′) м.д.

Пример 6. Влияние гидрированиой бетулоновой кислоты (1) и ее амидов (2-8) на жизнеспособность опухолевых клеток Т-клеточного лейкоза человека МТ-4

Клетки линии МТ-4 (клетки Т-клеточного лейкоза человека) культивировали в среде RPMI 1640, содержащей 10%-ную эмбриональную телячью сыворотку, антибиотики (100 ед./мл пенициллина и 0.1 мг/мл стрептомицина), в атмосфере 5%-ного СО2 при 37°С.

Жизнеспособность клеток после инкубации с соединениями (1-8) определяли с помощью МТТ теста, который основан на способности живых клеток превращать соединения на основе тетразола (МТТ) в ярко окрашенные кристаллы формазана, что позволяет спектрофотометрически оценивать количество живых клеток в препарате. Для этого клетки высаживали в 96-луночные планшеты (100 мкл клеток с концентрацией 500 тыс. клеток/мл). Затем к клеткам добавляли раствор соединений (1-8) в ДМСО до конечной концентрации в среде от 0.1 до 100 мкг/мл. В качестве препарата сравнения использовали бетулоновую кислоту (БА) и ее соответствующие амиды (БА1-БА7). Клетки инкубировали в присутствии соединений еще в течение 3-х суток в тех же условиях. По окончании инкубации, без смены среды, к клеткам добавляли раствор МТТ (5 мг/мл) в фосфатно-солевом буфере до концентрации 0.5 мг/мл и инкубировали в течение 3 ч в тех же условиях. Среду удаляли, к клеткам добавляли по 100 мкл ДМСО, в котором происходит растворение образовавшихся в клетках кристаллов формазана, и измеряли оптическую плотность на многоканальном спектрофотометре на длинах волн 570 и 630 нм, где А570 - поглощение формазана, а А630 - фон клеток.

Данные представляли в виде количества живых клеток относительно контроля. За 100% принимали количество клеток в контроле, где клетки инкубировали в отсутствие соединения, но в присутствии растворителя ДМСО.

Данные по обработке лейкозных клеток МТ-4 соединениями (1-8) приведены на Фиг 1-7.

На Фиг.1 показана жизнеспособность клеток линии МТ-4 после инкубации с соединением (2) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (2). В качестве препарата сравнения использовано аналогичное производное БК (БА1)

На Фиг.2 - жизнеспособность клеток линии МТ-4 после инкубации с соединением (3) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (3). В качестве препарата сравнения использовано аналогичное производное БК (БА2).

На Фиг.3 - жизнеспособность клеток линии МТ-4 после инкубации с соединением (4) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (4). В качестве препарата сравнения использовано аналогичное производное БК (БА3).

На Фиг.4 - жизнеспособность клеток линии МТ-4 после инкубации с соединением (5) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (5). В качестве препарата сравнения использовано аналогичное производное БК (БА4).

На Фиг.5 - жизнеспособность клеток линии МТ-4 после инкубации с соединением (6) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (6). В качестве препарата сравнения использовано аналогичное производное БК (БА5).

На Фиг.6 - жизнеспособность клеток линии МТ-4 после инкубации с соединением (7) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (7). В качестве препарата сравнения использовано аналогичное производное БК (БА6).

На Фиг.7 - жизнеспособность клеток линии МТ-4 после инкубации с соединением (8) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (8). В качестве препарата сравнения использовано аналогичное производное БК (БА7).

Из данных, приведенных на Фиг.1-7, видно, что обработка лейкозных клеток МТ-4 соединениями (1-8) вызывает их эффективную гибель уже при концентрации соединений 10-6 М. Значения CCID50 - концентрация соединения, при которой наблюдается гибель 50% клеток, а также CCID80 и CCID90 (концентрации, при которых наблюдается гибель 80 и 90% клеток, соответственно) приведены в таблице 1.

Из данных, приведенных в таблице 1, видно, что соединения (1-8) обладают таким же или более выраженным противоопухолевым эффектом по сравнению с ранее описанными аналогичными производными бетулоновой кислоты (БА1-БА7), за исключением соединения (4), противоопухолевый эффект которого на клетках МТ-4 менее выражен по сравнению с аналогичным производным бетулоновой кислоты.

Пример 7. Влияние гидрированной бетулоновой кислоты (1) и ее амидов (2-8) на жизнеспособность опухолевых клеток Т-клеточного лейкоза человека СЕМ-13

Клетки линии СЕМ-13 (линия клеток Т-клеточного лейкоза человека) культивировали в среде RPMI 1640, содержащей 10%-ную эмбриональную телячью сыворотку, антибиотики (100 ед./мл пенициллина и 0.1 мг/мл стрептомицина), в атмосфере 5%-ного СО2 при 37°С.

Жизнеспособность клеток после инкубации с соединениями (1-8) определяли с помощью МТТ теста, который основан на способности живых клеток превращать соединения на основе тетразола (МТТ) в ярко окрашенные кристаллы формазана, что позволяет спектрофотометрически оценивать количество живых клеток в препарате. Для этого клетки высаживали в 96-луночные планшеты (100 мкл клеток с концентрацией 500 тыс. клеток/мл). Затем к клеткам добавляли раствор соединения (1) в ДМСО до конечной концентрации в среде от 0.1 до 100 мкг/мл. В качестве препарата сравнения использовали аналогичные производные бетулоновой кислоты (2). Клетки инкубировали в присутствии исследуемых соединений еще в течение 3-х суток в тех же условиях. По окончании инкубации, без смены среды, к клеткам добавляли раствор МТТ (5 мг/мл) в фосфатно-солевом буфере до концентрации 0.5 мг/мл и инкубировали в течение 3 ч в тех же условиях. Среду удаляли, к клеткам добавляли по 100 мкл ДМСО, в котором происходит растворение образовавшихся в клетках кристаллов формазана, и измеряли оптическую плотность на многоканальном спектрофотометре на длинах волн 570 и 630 нм, где А570 - поглощение формазана, а А630 - фон клеток.

Подсчет значений CCID проводили как описано в примере 5. Значения CCID50 - концентрация соединения, при которой наблюдается гибель 50% клеток, а также CCID80 и CCID90 (концентрации, при которых наблюдается гибель 80 и 90% клеток, соответственно) приведены в таблице 1. Все исследованные соединения (1-8) обладают таким же или более выраженным противоопухолевым эффектом по сравнению с ранее описанными аналогичными производными бетулоновой кислоты (БА1-БА7), за исключением соединения (4), противоопухолевый эффект которого на клетках СЕМ-13 менее выражен по сравнению с аналогичным производным бетулоновой кислоты.

Жизнеспособность клеток линии СЕМ-13 после инкубации с соединениями (2-8) иллюстрируется Фиг.8-14.

Фиг.8 - жизнеспособность клеток линии СЕМ-13 после инкубации с соединением (2) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (2). В качестве препарата сравнения использовано аналогичное производное БК (БА1)

Фиг.9 - жизнеспособность клеток линии СЕМ-13 после инкубации с соединением (3) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (3). В качестве препарата сравнения использовано аналогичное производное БК (БА2).

Фиг.10 - жизнеспособность клеток линии СЕМ-13 после инкубации с соединением (4) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (4). В качестве препарата сравнения использовано аналогичное производное БК (БА3).

Фиг.11 - жизнеспособность клеток линии СЕМ-13 после инкубации с соединением (5) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (5). В качестве препарата сравнения использовано аналогичное производное БК (БА4).

Фиг.12 - жизнеспособность клеток линии СЕМ-13 после инкубации с соединением (6) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (6). В качестве препарата сравнения использовано аналогичное производное БК (БА5).

Фиг.13 - жизнеспособность клеток линии СЕМ-13 после инкубации с соединением (7) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (7). В качестве препарата сравнения использовано аналогичное производное БК (БА6).

Фиг.14 - жизнеспособность клеток линии СЕМ-13 после инкубации с соединением (8) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (8). В качестве препарата сравнения использовано аналогичное производное БК (БА7).

Пример 8. Влияние гидрированной бетулоновой кислоты (1) и ее амидов (2-8) на жизнеспособность опухолевых клеток человека U-937

Клетки линии U-937 (опухолевая линия моноцитов человека) культивировали в среде RPMI 1640, содержащей 10%-ную эмбриональную телячью сыворотку, антибиотики (100 ед./мл пенициллина и 0.1 мг/мл стрептомицина), в атмосфере 5%-ного СО2 при 37°С.

Жизнеспособность клеток после инкубации с соединениями (1-8) определяли с помощью МТТ теста, который основан на способности живых клеток превращать соединения на основе тетразола (МТТ) в ярко окрашенные кристаллы формазана, что позволяет спектрофотометрически оценивать количество живых клеток в препарате. Для этого клетки высаживали в 96-луночные планшеты (100 мкл клеток с концентрацией 400 тыс. клеток/мл). Затем к клеткам добавляли раствор исследуемых соединений в ДМСО до конечной концентрации в среде от 0.1 до 100 мкг/мл. В качестве препарата сравнения использовали бетулоновую кислоту (2). Клетки инкубировали в присутствии соединений еще в течение 3-х суток в тех же условиях. По окончании инкубации, без смены среды, к клеткам добавляли раствор МТТ (5 мг/мл) в фосфатно-солевом буфере до концентрации 0.5 мг/мл и инкубировали в течение 3 ч в тех же условиях. Среду удаляли, к клеткам добавляли по 100 мкл ДМСО, в котором происходит растворение образовавшихся в клетках кристаллов формазана, и измеряли оптическую плотность на многоканальном спектрофотометре на длинах волн 570 и 630 нм, где А570 - поглощение формазана, а А630 - фон клеток.

Подсчет значений CCID проводили как описано в примере 5. Значения CCID50 - концентрация соединения, при которой наблюдается гибель 50% клеток, а также CCID80 и CCID90 (концентрации, при которых наблюдается гибель 80 и 90% клеток, соответственно) приведены на Фиг.15-22.

Фиг.15 - жизнеспособность клеток линии U-937 после инкубации с соединением (2) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (2). В качестве препарата сравнения использовано аналогичное производное БК (БА1).

Фиг.16 - жизнеспособность клеток линии U-937 после инкубации с соединением (3) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (3). В качестве препарата сравнения использовано аналогичное производное БК (БА2).

Фиг.17 - жизнеспособность клеток линии U-937 после инкубации с соединением (4) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (4). В качестве препарата сравнения использовано аналогичное производное БК (БА3).

Фиг.18 - жизнеспособность клеток линии U-937 после инкубации с соединением (5) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (5). В качестве препарата сравнения использовано аналогичное производное БК (БА4).

Фиг.19 - жизнеспособность клеток линии U-937 после инкубации с соединением (6) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (6). В качестве препарата сравнения использовано аналогичное производное БК (БА5).

Фиг.20 - жизнеспособность клеток линии U-937 после инкубации с соединением (7) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (7). В качестве препарата сравнения использовано аналогичное производное БК (БА6).

Фиг.21 - жизнеспособность клеток линии U-937 после инкубации с соединением (8) в течение 72 ч. Количество живых клеток оценивали с помощью МТТ теста. За 100% принимали количество живых клеток, инкубированных в присутствии ДМСО, но без соединения (8). В качестве препарата сравнения использовано аналогичное производное БК (БА7).

Таким образом, соединения (1-8) обладают более выраженным противоопухолевым эффектом в отношении исследованных опухолевых клеток U-937 по сравнению с бетулоновой кислотой и ее аналогичными производными (БА1-БА8), для которой ранее было показано наличие выраженной противоопухолевой активности.

Пример 9. Влияние гидрированной бетулоновой кислоты (1) и ее амидов (2-8) на жизнеспособность опухолевых линий клеток человека

Значения CCID - концентрация соединений (1-8), при которой наблюдается гибель карциномных клеток, - приведены в таблице 1. CCID50 - концентрация соединения, при которой наблюдается гибель 50% клеток, а также CCID80 и CCID90 (концентрации, при которых наблюдается гибель 80 и 90% клеток, соответственно). Таким образом, соединения (1-8) обладают таким же или более выраженным противоопухолевым эффектом в отношении исследованных опухолевых клеток МТ-4, СЕМ-13 и U-937 по сравнению с бетулоновой кислотой и ее аналогичными производными (БА1-БА8), для которой ранее было показано наличие выраженной противоопухолевой активности.

Таблица 1 Гидрированная бетулоновая кислота и ее амиды как противопухолевые средства тритерпеновой природы CCID50, µМ Кислота и ее амиды СЕМ-13 U-937 MT-4 (1) 4.4 3.8 3.5 (2) 17.2 6.0 8.2 (3) 14.3 22.8 2.9 3.8 26.6 (4) 13.0 7.8 33.4 (5) 6.9 6.0 7.2 (6) 12.4 23.5 5.9 7.7 16.8 (7) 26.0 36.2 69.5 10.9 26.0 (8) 10.6 11.9 11.9 CCID80, µМ (1) 186.1 87.6 100.7 (2) 101.2 >190 61.1 (3) 121.7 190.2 123.6 (4) >185.6 >185.6 157.7 (5) 77.8 >180.9 48.8 (6) >167.7 21.8 115.7 (7) >144.7 >144.7 118.7 (8) >185.9 >185.9 66.9 CCID90, µM (1) >219 >219 >219 (2) 175.5 >190 118.4 (3) >190 >190 >190 (4) >185.6 >185.6 >185.6 (5) 180.9 >180.9 110.3 (6) >167.7 >167.7 >167.7 (7) >144.7 >144.7 >144.7 (8) >185.9 >185.9 117.1

Таблица 2 Гидрированная бетулоновая кислота и ее амиды как противопухолевые средства тритерпеновой природы С-атом амид (2)a амид (3)b амид (4)c амид (5)c амид (6)c амид (7)d амид (8)d С-1 39.48 т 39.48 т 39.48 т 39.46 т 39.45 т 39.50 т 39.50 т С-2 33.97 т 33.97 т 33.98 т 33.95 т 33.94 т 34.00 т 33.98 т С-3 217.92 с 217.83 с 217.91 с 217.85 с 217.82 с 217.97 с 217.91 с С-4 47.14 с 47.15 с 47.15 с 47.12 с 47.12 с 47.18 с 47.15 с С-5 54.90 д 54.90 д 54.90 д 54.88 д 54.86 д 54.93 д 54.90 д С-6 19.49 т 19.48 т 19.49 т 19.47 т 19.45 т 19.52 т 19.51 т С-7 33.63 т 33.64 т 33.62 т 33.60 т 33.60 т 33.67 т 33.65 т С-8 40.45 с 40.47 с 40.47 с 40.45 с 40.44 с 40.49 с 40.52 с С-9 49.83 д 49.78 д 49.80 д 49.79 д 49.76 д 49.83 д 49.88 д С-10 36.74 с 36.74 с 36.75 с 36.73 с 36.72 с 36.77 с 36.76 с С-11 21.57 т 21.53 т 21.54 т 21.53 т 21.51 т 21.56 т 21.59 т С-12 27.02 т 26.99 т 27.01 т 26.99 т 26.95 т 27.03 т 27.04 т С-13 36.57 д 36.55 д 36.54 д 36.51 д 36.55 д 36.56 д 36.51 д С-14 41.88 с 41.89 с 41.88 с 41.86 с 41.88 с 41.90 с 41.98 с С-15 29.73 т 29.65 т 29.65 т 29.61 т 29.63 т 29.65 т 29.80 т С-16 32.17 т 32.08 т 32.15 т 32.13 т 32.20 т 32.13 т 31.92 т С-17 54.89 с 54.74 с 54.79 с 54.75 с 54.87 с 54.80 с 55.21 с С-18 52.21 д 52.02 д 52.06 д 52.04 д 52.06 д 52.07 д 52.50 д С-19 42.67 д 42.59д 42.60 д 42.59 д 42.58 д 42.66 д 42.76 д С-20 29.66 д 29.61 д 29.63 д 29.61 д 29.60 д 29.65 д 29.73 д С-21 23.39 т 23.34 т 23.35 т 23.33 т 23.32 т 23.37 т 23.43 т С-22 35.98 т 35.91 т 35.97 т 35.95 т 35.99 т 35.96 т 36.23 т С-23 26.44 к 26.44 к 26.44 к 26.43 к 26.41 к 26.47 к 26.46 к С-24 20.85 к 20.86 к 20.86 к 20.84 к 20.84 к 20.90 к 20.84 к С-25 15.77 к 15.77 к 15.78 к 15.76 к 15.75 к 15.80 к 15.80 к С-26 15.77 к 15.77 к 15.77 к 15.76 к 15.74 к 15.80 к 15.74 к С-27 14.27 к 14.26 к 14.26 к 14.24 к 14.25 к 14.28 к 14.34 к С-28 173.27 с 173.69 с 173.50 с 173.41 с 173.85 с 173.47 с 173.88 с С-29 14.52 к 14.50 к 14,51 к 14.49 к 14.47 к 14.52 к 14.56 к С-30 22.77 к 22.76 к 22.77 к 22.75 к 22.73 к 22.79 к 22.82 к С-3′,5′ 26.06 т 66.82 т 55.06 т 52.90 т 43.64 т 52.16 т С-7′ 45.76 к 52.08 к 155.34 c 76.12 д С-8′ 11.73 к 61.38 т 142.26 с С-9′ 14.45 к 126.66 д

Похожие патенты RU2448115C1

название год авторы номер документа
N-ЭТИЛПИПЕРАЗИЛАМИД БЕТУЛОНОВОЙ КИСЛОТЫ КАК ПРОТИВООПУХОЛЕВОЕ СРЕДСТВО ТРИТЕРПЕНОВОЙ ПРИРОДЫ 2010
  • Покровский Андрей Георгиевич
  • Покровский Михаил Андреевич
  • Майнагашев Илья Яковлевич
  • Салахутдинов Нариман Фаридович
  • Толстиков Генрих Александрович
RU2445317C1
4-ИЗОПРОПИЛ-7-МЕТОКСИ-2А-МЕТИЛ-2,2А,2А,3,5А,9B-ГЕКСАГИДРОФЛУОРЕНО[9,1-BC]ФУРАН-8-ОЛ, ОБЛАДАЮЩИЙ ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ 2013
  • Покровский Андрей Георгиевич
  • Покровский Михаил Андреевич
  • Курбакова Светлана Юрьевна
  • Корчагина Дина Владимировна
  • Михальченко Оксана Станиславовна
  • Волчо Константин Петрович
  • Салахутдинов Нариман Фаридович
RU2535926C1
ПРОИЗВОДНЫЕ УСНИНОВОЙ КИСЛОТЫ КАК ПРОТИВООПУХОЛЕВЫЕ АГЕНТЫ 2013
  • Покровский Андрей Георгиевич
  • Покровский Михаил Андреевич
  • Лузина Ольга Анатольевна
  • Соколов Дмитрий Николаевич
  • Салахутдинов Нариман Фаридович
RU2536873C1
Лекарственное средство, обладающее противовоспалительной активностью 2016
  • Покровский Андрей Георгиевич
  • Покровский Михаил Андреевич
  • Чересиз Сергей Владимирович
  • Якушин Андрей Сергеевич
  • Попов Сергей Александрович
  • Шпатов Александр Владимирович
  • Шульц Эльвира Эдуардовна
RU2617123C1
N-[3-ОКСОЛУП-20(29)-ЕН-28-ОИЛ]-2,2,6,6-ТЕТРАМЕТИЛПИПЕРИДИН-4-ИЛАМИН, ОБЛАДАЮЩИЙ ЦИТОТОКСИЧЕСКОЙ АКТИВНОСТЬЮ В ОТНОШЕНИИ ОПУХОЛЕВЫХ КЛЕТОК ЧЕЛОВЕКА 2017
  • Покровский Андрей Георгиевич
  • Покровский Михаил Андреевич
  • Чересиз Сергей Владимирович
  • Шульц Эльвира Эдуардовна
  • Волкова Анна Николаевна
  • Петренко Наталья Ивановна
RU2641900C1
N'-{N-[3-ОКСО-ЛУПАН-28-ОИЛ]-9-АМИНОНОНАНОИЛ}-3-АМИНО-3-ФЕНИЛ-ПРОПИОНОВАЯ КИСЛОТА И ЕЕ СОЛИ КАК ПРОТИВОВИРУСНЫЕ И ИММУНОСТИМУЛИРУЮЩИЕ АГЕНТЫ 2006
  • Джемилев Усеин Меметович
  • Толстиков Генрих Александрович
  • Покровский Андрей Георгиевич
  • Салахутдинов Нариман Фарадович
  • Толстикова Татьяна Генриховна
  • Шульц Эльвира Эдуардовна
RU2317996C1
N,N'-(АЛКАНДИИЛ)БИС[ЛАБДА-7(9),13,14-ТРИЕН-4-КАРБОКСАМИДЫ], ОБЛАДАЮЩИЕ ПРОТИВООПУХОЛЕВОЙ АКТИВНОСТЬЮ 2017
  • Харитонов Юрий Викторович
  • Шульц Эльвира Эдуардовна
  • Сорокина Ирина Васильевна
  • Сазонова Людмила Вячеславовна
  • Толстикова Татьяна Генриховна
  • Покровский Андрей Георгиевич
  • Покровский Михаил Андреевич
RU2654201C1
16-(1,2,4-ОКСАДИАЗОЛ-3-ИЛ)-15,16-ЭПОКСИЛАБДАНОИДЫ, ОБЛАДАЮЩИЕ ЦИТОТОКСИЧЕСКОЙ АКТИВНОСТЬЮ ПО ОТНОШЕНИЮ К ОПУХОЛЕВЫМ КЛЕТКАМ ЧЕЛОВЕКА 2011
  • Шульц Эльвира Эдуардовна
  • Харитонов Юрий Викторович
  • Покровский Михаил Андреевич
  • Покровский Андрей Георгиевич
  • Толстиков Генрих Александрович
RU2473550C1
6-ГИДРОКСИНАФТОХИНОНЫ ЛАБДАНОВОГО ТИПА, ОБЛАДАЮЩИЕ ЦИТОТОКСИЧЕСКОЙ АКТИВНОСТЬЮ ПО ОТНОШЕНИЮ К ОПУХОЛЕВЫМ КЛЕТКАМ ЧЕЛОВЕКА 2012
  • Шульц Эльвира Эдуардовна
  • Миронов Максим Евгеньевич
  • Покровский Михаил Андреевич
  • Шерман Ксения Михайловна
  • Покровский Андрей Георгиевич
  • Толстиков Генрих Александрович
RU2479582C1
N'-{N-[3-ОКСО-20(29)-ЛУПЕН-28-ОИЛ]-9-АМИНОНОНАНОИЛ}-3-АМИНО-3-ФЕНИЛПРОПИО НОВАЯ КИСЛОТА, ОБЛАДАЮЩАЯ ИММУНОСТИМУЛИРУЮЩЕЙ И ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ 2002
  • Толстиков Г.А.
  • Петренко Н.И.
  • Еланцева Н.В.
  • Шульц Э.Э.
  • Плясунова О.А.
  • Ильичева Т.Н.
  • Борисова О.А.
  • Проняева Т.Р.
  • Покровский А.Г.
RU2211843C1

Иллюстрации к изобретению RU 2 448 115 C1

Реферат патента 2012 года ГИДРИРОВАННАЯ БЕТУЛОНОВАЯ КИСЛОТА И ЕЕ АМИДЫ КАК ПРОТИВООПУХОЛЕВЫЕ СРЕДСТВА ТРИТЕРПЕНОВОЙ ПРИРОДЫ

Изобретение относится к новому ряду химических соединений, а именно к гидрированной бетулоновой кислоте формулы (1) и ее амидам формулы (2-8):

NR1R2=

которые могут быть использованы в медицине в качестве лекарственных средств, обладающих противоопухолевым действием. 8 пр., 2 табл., 23 ил.

Формула изобретения RU 2 448 115 C1

Гидрированная бетулоновая кислота формулы (1) и ее амиды формулы (2-8)

NR1R2=


обладающие противоопухолевой активностью.

Документы, цитированные в отчете о поиске Патент 2012 года RU2448115C1

N'-{N-[3-ОКСО-20(29)-ЛУПЕН-28-ОИЛ]-9-АМИНОНОНАНОИЛ}-3-АМИНО-3-ФЕНИЛПРОПИО НОВАЯ КИСЛОТА, ОБЛАДАЮЩАЯ ИММУНОСТИМУЛИРУЮЩЕЙ И ПРОТИВОВИРУСНОЙ АКТИВНОСТЬЮ 2002
  • Толстиков Г.А.
  • Петренко Н.И.
  • Еланцева Н.В.
  • Шульц Э.Э.
  • Плясунова О.А.
  • Ильичева Т.Н.
  • Борисова О.А.
  • Проняева Т.Р.
  • Покровский А.Г.
RU2211843C1
RU 2007121729 A, 14.11.2005
КОРРЕКТОР ПАРАНЕОПЛАСТИЧЕСКИХ ПОВРЕЖДЕНИЙ И ТОКСИЧЕСКИХ ЭФФЕКТОВ ЦИТОСТАТИЧЕСКОЙ ПОЛИХИМИОТЕРАПИИ 2008
  • Сорокина Ирина Васильевна
  • Толстикова Татьяна Генриховна
  • Жукова Наталья Анатольевна
  • Баев Дмитрий Сергеевич
  • Толстиков Генрих Александрович
  • Казакова Оксана Борисовна
RU2385324C1
US 5679828 A, 21.10.1997
СОРОКИНА И.В
и др
// Докл
АН, 2004, 399, с.274.

RU 2 448 115 C1

Авторы

Покровский Андрей Георгиевич

Покровский Михаил Андреевич

Майнагашев Илья Яковлевич

Салахутдинов Нариман Фаридович

Толстиков Генрих Александрович

Даты

2012-04-20Публикация

2010-12-20Подача