Изобретение относится к изысканию низколегированных чугунов, работающих в условиях износа при кавитации, в частности при изготовлении гильз цилиндров, втулок и других деталей двигателей внутреннего сгорания с повышенной эксплуатационной стойкостью.
Известен низколегированный чугун (а.с. СССР №734308, МПК C22C 37/10, 1980) следующего химического состава, мас.%:
Известный чугун имеет низкие механические свойства и высокий износ при кавитации и фреттинг-коррозии. Эксплуатационная стойкость гильз и других деталей при интенсивном изнашивании в условиях кавитации составляет от 50 до 70 часов.
Известен также износостойкий низколегированный чугун (патент ПНР №102522, МПК C22C 37/08, 1979) содержащий, мас.%:
Этот чугун имеет высокую твердость (до 400 НВ) и низкие пластические свойства. В отливках деталей двигателей из-за высокого содержания хрома в структуре преобладают карбиды цементитного типа, что снижает ударную вязкость и эксплуатационную стойкость при кавитации.
Наиболее близким техническим решением, выбранным в качестве прототипа, является износостойкий чугун (а.с. СССР №926057, МПК C22C 37/10, 1982), содержащий, мас.%:
Физико-механические свойства этого чугуна:
Недостаток - низкие эксплуатационные свойства в условиях кавитации, сложно-напряженного состояния и износа.
Задачей данного технического решения является повышение эксплуатационных свойств.
Поставленная задача решается тем, что чугун, содержащий углерод, кремний, марганец, хром, молибден, медь, никель, алюминий, фосфор, олово, кальций и железо, дополнительно содержит кобальт, карбонитриды титана, ниобий, бор и лантан при следующем соотношении компонентов, мас.%:
Проведенный анализ предложенного технического решения показал, что на данный момент не известны технические решения, в которых были бы отражены указанные отличия. Кроме того, указанные признаки являются необходимыми и достаточными для достижения положительного эффекта, указанного в цели изобретения. Это позволяет сделать вывод о том, что данные отличия являются существенными.
Дополнительное введение кобальта (0,02-0,28 мас.%) и лантана (0,02-0,07 мас.%) обусловлено их высокой химической и модифицирующей активностью в расплавленном металле, способностью упрочнять матрицу, измельчать структуру, улучшать форму графита и повышать механические и эксплуатационные свойства. При этом кобальт в большей степени влияет на упруго-пластические свойства и демпфирующую способность, а лантан упрочняет матрицу, улучшает форму графита, повышает задиростойкость, износостойкость и эксплуатационные свойства. При увеличении их концентрации выше верхних пределов повышаются угар, отбел чугуна, снижается стабильность демпфирующей способности и эксплуатационных свойств. При концентрации кобальта до 0,02 мас.% и лантана до 0,02 мас.% их модифицирующий и стабилизирующий эффекты недостаточны, а механические и эксплуатационные свойства чугуна низкие.
Карбонитриды титана снимают отбел, ускоряют процессы графитизации и бейнитного превращения, измельчают структуру, повышают демпфирующую способность, предел коррозийной усталости и эксплуатационные свойства. При введении их в количестве до 0,02 мас.% измельчение структуры и повышение механических и эксплуатационных свойств незначительно, а при повышении концентрации их более 0,25 мас.% увеличивается количество карбонитридов по границам зерен, снижаются однородность структуры, механические и эксплуатационные свойства.
Введения ниобия (0,13-0,30 мас.%) и бора (0,03-0,10 мас.%) обусловлено их высоким микролегирующим влиянием на структуру при стабилизации упруго-пластических и эксплуатационных свойств. Их влияние начинает сказываться с концентрации соответственно 0,13 мас.% и 0,03 мас.%, а при увеличении их содержания более 0,30 мас.% и 0,10 мас.% соответственно возрастает отбел в тонких стенках литых деталей, снижаются механические и эксплуатационные свойства.
Кальций вводят как эффективный модификатор, очищающий границы зерен от неметаллических включений и повышающий стабильность структуры и эксплуатационных свойств. Верхний предел концентрации кальция обусловлен ограниченной растворимостью его в перлите, а при концентрации его до 0,02 мас.% модифицирующий эффект недостаточен.
Введение в чугун (0,3-0,7 мас.%) хрома и (0,002-0,015 мас.%) олова микролегирует и упрочняет структуру, улучшает распределение графита и неметаллических включений, повышает плотность чугуна, сопротивляемость износу и воздействию кавитации, что повышает эксплуатационные свойства. Микролегирующее влияние начинает сказываться с концентрации 0,3 мас.% хрома и 0,002 мас.% олова. При увеличении их содержания выше верхних пределов увеличивается отбел, снижаются упруго-пластические и эксплуатационные свойства.
Содержание основных компонентов (углерод 2,8-3,3 мас.%, кремний 2,4-2,8 мас.% и марганец 0,8-1,5 мас.%) определены экспериментально с учетом практики производства износостойких чугунов для деталей двигателей с повышенными характеристиками кавитационной стойкости и демпфирующей способности. Увеличение содержания их выше верхних пределов снижает однородность структуры, предел коррозионной усталости, стабильность механических и эксплуатационных свойств. При их концентрации менее нижних пределов ухудшается процесс графитации и снижаются характеристики демпфирующей способности, пластических и эксплуатационных свойств. При уменьшении содержания углерода менее 2,8 мас.% и кремния менее 2,4 мас.% и увеличения концентрации марганца более 1,5 мас.% и хрома более 0,7 мас.% значительно увеличивается отбел, в структуре выделяются участки цементита при литье в кокиль и снижаются механические и эксплуатационные свойства, стабильность структуры и свойств.
Содержание фосфора в составе чугуна снижено до 0,02-0,07 мас.%, так как при более высоких концентрациях он снижает стабильность структуры и демпфирующую способность, предел выносливости при изгибе и пластические свойства.
Молибден (0,2-0,8 мас.%), медь (0,2-0,8 мас.%) и никель (0,6-1,3 мас.%) упрочняют металлическую основу и повышают механические свойства, кавитационно-эксплуатационную стойкость, ускоряют бейнитное превращение. Увеличение содержания этих легирующих компонентов выше верхних пределов снижает однородность структуры, ударную вязкость и эксплуатационную стойкость. При концентрации их менее нижних пределов упрочнение металлической основы, износостойкость и эксплуатационные свойства недостаточны.
Введение в расплав алюминия (0,6-1,4 мас.%) основано на его высоком сродстве к кислороду и сере, эффективном микролегирующем влиянии, стабилизирующем значения предела коррозийной усталости, физико-механических и эксплуатационных свойств. Его нижний предел (0,6 мас.%) обусловлен заметным повышением стабильности структуры, механических и эксплуатационных свойств, начиная с этой концентрации. При увеличении концентрации алюминия более 1,4 мас.% увеличивается содержание неметаллических включений в структуре и снижаются пластические и эксплуатационные свойства.
Чугун выплавляют в открытых индукционных печах. В качестве шихтовых материалов используют стальной лом, бой электродов, стружку, литейные и передельные чугуны, брикеты феррониобия, кобальт К2 (ГОСТ 123-87), брикеты карбонитридов титана, ферробор и другие ферросплавы, микролегирующие и модифицирующие присадки. Ферромолибден, кобальт, никель, ферробор, феррониобий и феррохром вводит в электропечь, а измельченные присадки карбонитридов титана, лантана, силикокальция, олова и других модифицирующих добавок в виде спрессованных экзотермических таблеток диаметром 50 мм и высотой 50 мм на основе алюминия и оксидов железа вводят в ковше при выпуске чугуна с температурой 1460-1480°С. Заливку литейных форм производят при температуре чугуна 1400-1430°С.
В таблице 1 приведены химические составы чугунов опытных плавок. Отливки втулок цилиндров производят способом литья в кокиль, технологические пробы и образцы для механических испытаний в песчаные литейные формы. Отливки и образцы подвергают термической обработке - изотермической выдержке при температуре 350-410°C.
В таблице 2 приведены механические и эксплуатационные свойства чугунов опытных плавок (составы 2, 3 и 4 - предложенный износостойкий чугун).
Предел прочности при изгибе, ударную вязкость и предел коррозионной усталости определяют по стандартным методикам на образцах, вырезанных из пробных отливок согласно ГОСТ 7293-85, а эксплуатационную стойкость при кавитации и износостойкость - на деталях и образцах, отлитых в кокиль, с использованием специальных стендов. Величину отбела определяют на клиновых пробах. Механические и эксплуатационные свойства определяют после термической обработки стандартных образцов и отливок двигателей. Ударная вязкость определена на образцах 10×10×55 мм с полукруглым надрезом.
Как видно из таблицы 2, предлагаемый чугун обладает более высокими показателями ударной вязкости, эксплуатационной стойкости при кавитации, износостойкости и коррозионной стойкости, чем известный.
название | год | авторы | номер документа |
---|---|---|---|
Чугун | 1990 |
|
SU1705396A1 |
Чугун | 1989 |
|
SU1661238A1 |
Чугун | 1990 |
|
SU1740479A1 |
Чугун | 1990 |
|
SU1712449A1 |
Чугун | 1983 |
|
SU1135790A1 |
СЕРЫЙ АНТИФРИКЦИОННЫЙ ЧУГУН | 2015 |
|
RU2602312C1 |
ИЗНОСОСТОЙКИЙ ЧУГУН | 2011 |
|
RU2452786C1 |
СЕРЫЙ АНТИФРИКЦИОННЫЙ ЧУГУН | 2009 |
|
RU2409689C1 |
Высокопрочный антифрикционный чугун | 2015 |
|
RU2615409C2 |
Чугун | 1990 |
|
SU1747529A1 |
Изобретение относится к металлургии, в частности к составам износостойких чугунов. Может использоваться для изготовления литых деталей двигателей внутреннего сгорания с повышенной эксплуатационной стойкостью. Чугун содержит, мас.%: углерод 2,8-3,3; кремний 2,4-2,8; марганец 0,8-1,5; хром 0,3-0,7; никель 0,6-1,3; медь 0,2-0,8; молибден 0,2-0,8; алюминий 0,6-1,4; кобальт 0,02-0,28; олово 0,002-0,015; кальций 0,02-0,05; карбонитриды титана 0,02-0,25; ниобий 0,13-0,30; бор 0,03-0,10; фосфор 0,02-0,07; лантан 0,02-0,07; железо остальное. Чугун обладает высокой ударной вязкостью, эксплуатационной стойкостью при кавитации, износостойкостью и коррозионной стойкостью. 2 табл.
Износостойкий чугун, содержащий углерод, кремний, марганец, хром, никель, молибден, алюминий, медь, фосфор, олово, кальций и железо, отличающийся тем, что он дополнительно содержит кобальт, карбонитриды титана, ниобий, бор и лантан при следующем соотношении компонентов, мас.%:
Чугун | 1980 |
|
SU926057A1 |
Чугун | 1990 |
|
SU1705396A1 |
Чугун | 1990 |
|
SU1740479A1 |
ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ | 1996 |
|
RU2166119C2 |
US 4435226 A, 06.03.1984. |
Авторы
Даты
2012-04-20—Публикация
2010-05-11—Подача