ЖАРОПРОЧНАЯ СТАЛЬ Российский патент 2012 года по МПК C22C38/32 

Описание патента на изобретение RU2448192C1

Изобретение относится к области металлургии, в частности к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°C.

Известна жаропрочная сталь, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, церий, кальций, азот, фосфор и серу при следующем соотношении компонентов, мас.%: углерод 0,08-0,12; кремний 0,17-0,37; марганец 0,3-0,6; хром 8,0-10,0; молибден 0,6-2,0; ванадий 0,15-0,35; ниобий 0,10-0,20; церий 0,02-0,05; кальций 0,005-0,05; азот 0,03-0,07; фосфор не более 0,03; сера не более 0,015, железо остальное (RU 2229532, C22C 38/26, опубликовано 27.05.2004).

Эта сталь имеет опыт эксплуатации в теплоэнергетике в качестве материала трубопроводов и других элементов, работающих при температурах до 600°C включительно, но не обеспечивает возможность повышения параметров пара тепловых энергоблоков свыше 600°C.

Известна жаропрочная сталь для деталей паровых турбин, содержащая углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, ниобий, алюминий, никель, азот, бор, фосфор, серу, олово и железо. Кроме того, компоненты стали находятся в определенных соотношениях между собой (RU 2404281, C22C 38/60, C22C 3854, C22C 38/32, опубликовано 20.11.2010).

Однако указанная сталь также не отвечает требованиям к стали для тепловых энергоблоков с параметрами температуры до 650°C и давления пара до 35 МПа, которая должна иметь при температуре 650°C длительную прочность σ105 не менее 98 Н/мм2 и длительную пластичность не менее 10%.

Наиболее близкой по составу компонентов является мартенситная нержавеющая сталь, содержащая углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, ниобий, алюминий, никель, азот, бор, фосфор, кальций, серу, церий, олово, магний, свинец и железо (RU 2321670, C22C 38/58, опубликовано 10.04.2008).

Однако эта сталь не является жаропрочной при температурах свыше 600°C даже при схожести качественного состава компонентов со сталью по изобретению, поскольку имеет низкое содержание хрома (до 5 мас.%), достаточно высокое содержание углерода (0,05-0,5 мас.%), кобальта (5-15 мас.%), меди (до 8 мас.%), молибдена и вольфрама (до 6 мас.%), а также ванадия и ниобия.

Задачей изобретения и его техническим результатом является жаропрочная сталь со следующими характеристиками жаропрочности: длительная прочность при температуре 620°C σ620≥140 Н/мм2, при температуре 650°C σ650≥110-115 Н/мм2, длительная пластичность при температуре 650°C δ650≥20,5%.

Сущностью изобретения является жаропрочная сталь, содержащая углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, ниобий, алюминий, никель, азот, бор, фосфор, кальций, серу, церий, олово, магний, свинец, мышьяк и железо при следующих соотношениях компонентов, мас.%: углерод 0,001-0,009, кремний 0,005-0,10, марганец 0,2-0,4, хром 8,5-9,5, молибден 0,4-0,6, вольфрам 1,8-3,0, кобальт 2,5-4,0, ванадий 0,15-0,30, ниобий 0,04-0,09, алюминий не более 0,015, никель не более 0,2, азот 0,04-0,10, бор 0,003-0,01, фосфор не более 0,015, кальций 0,005-0,05, сера не более 0,010, церий 0,02-0,05, олово не более 0,006, магний 0,005-0,05, свинец не более 0,006, мышьяк не более 0,006 и железо остальное, при выполнении отношения содержания азота к содержанию углерода: [N]/[C]=6-20, и отношения суммарного содержания азота и углерода к суммарному содержанию ванадия и ниобия: [C]+[N]/[Nb]+[V]=0,1-0,5, причем суммарное содержание вольфрама и молибдена не менее 2,3 мас.%.

Технический результат также достигается тем, что сталь обладает мелкозернистой структурой с размером зерна 10-40 нм после пластической деформации и термической обработки при температуре нормализации 1040-1060°C и отпуске при температуре 740-780°C.

Содержание углерода в стали по изобретению 0,001-0,009 мас.% при содержании азота 0,04-0,10 мас.% и бора 0,003-0,01 мас.% обеспечивает требуемый уровень длительной прочности. Содержание углерода более 0,009 мас.% не обеспечивает необходимого уровня длительной прочности, так как при рабочих температурах 650°C карбиды коагулируют, сильно увеличиваясь в размерах, и разупрочняют сталь.

При содержании углерода в стали 0,001-0,009 мас.% имеет место смещение термодинамического равновесия между кислородом и углеродом в системе Fe-Cr-C-O в сторону увеличения содержания кислорода (до 0,028 мас.%). Это приводит к формированию большого количества неметаллических включений в стали, преимущественно оксидов и оксисульфидов, и, следовательно, к резкому снижению длительной прочности. Поэтому сталь должна содержать такое количество элементов-раскислителей, которое при изготовлении стали обеспечивает содержание кислорода на уровне до 0,001-0,0015 мас.%. В обычных сталях с этой ролью успешно справляются алюминий и кремний. В стали по изобретению такими раскислителями являются алюминий, кремний и магний в заявленных концентрациях. Магний обладает высокой раскислительной способностью, продукты взаимодействия его с кислородом легко выводятся из расплава (ассимилируются шлаком). Кроме того, магний способствует глобуляризации неметаллических включений, уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает ударную вязкость.

Требуемый уровень длительной прочности при сохранении необходимого уровня пластичности при рабочих температурах порядка 650°C обеспечивает использование нитридно-боридного упрочнения стали. Поддержание отношения содержания азота к содержанию углерода: [N]/[C]=6-20, и отношения суммарного содержания азота и углерода к суммарному содержанию ванадия и ниобия: [C]+[N]/[Nb]+[V]=0,1-0,5, не допускает возможности образования карбидов и карбонитридов и обеспечивает образование мелкодисперсных тугоплавких нитридов ванадия и ниобия, равномерно распределенных в объеме зерна.

Содержание кобальта в количестве 2,5-4,0 мас.% способствует уменьшению скорости диффузии легирующих элементов и, как следствие, увеличению дисперсности упрочняющих карбидных и интерметаллидных частиц, а также уменьшению количества δ-феррита в структуре стали, что приводит к увеличению характеристик длительной прочности.

Содержание вольфрама в количестве 1,8-3,0 мас.% за счет упрочнения твердого раствора и выделения фазы Лавеса Fe2W, а также содержание молибдена 0,4-0,6 мас.% повышает жаропрочность стали. При этом для достижения оптимального эффекта суммарное содержание вольфрама и молибдена должно быть не менее 2,3 мас.%, но, желательно, не более 3,2 мас.%.

Содержание бора 0,001-0,01 мас.% обеспечивает длительную прочность и длительную пластичность за счет растворения бора как поверхностно-активного элемента в граничных зонах с упрочнением границ зерен и замедлением протекания диффузионных процессов в этих участках.

Содержание ниобия 0,04-0,09 мас.% способствует получению более мелких нитридов NbN и, как следствие, повышению длительной прочности.

Содержание никеля не более 0,2 мас.% и легкоплавких элементов олова и свинца не более 0,006 мас.% каждого способствует повышению длительной прочности.

Содержание хрома 8,5-9,5 мас.% обеспечивает заданное количество, не более 10%, структурно-свободного феррита, технологичность стали в трубном производстве, ее высокую жаропрочность и ударную вязкость.

Содержание ванадия в количестве 0,15-0,30 мас.% способствует повышению длительной прочности. При содержании ванадия менее 0,15 мас.% не обеспечивается нужная жаропрочность, при содержании более 0,30 мас.% его влияние отрицательно, так как ванадий, находясь в твердом растворе, уменьшает силы межатомных связей.

Содержание в стали кальция в количестве 0,005-0,05 мас.% способствует обеспечению изотропности свойств, снижая вторичное окисление стали и способствуя равномерному распределению сульфидных и оксидных включений.

Содержание в стали церия в количестве 0,02-0,05 мас.% способствует глобуляризации неметаллических включений, уменьшает количество оксидных включений типа глинозема и шпинелей, очищает границы зерен и повышает ударную вязкость.

Содержание фосфора не более 0,015%, серы не более 0,010% и, дополнительно, мышьяка не более 0,006 способствует получению более высоких характеристик пластичности.

Жаропрочная сталь по изобретению обладает мелкозернистой структурой с размером зерна 10-40 нм после пластической деформации и термической обработки при температуре нормализации 1040-1060°C и отпуске при температуре 740-780°C. При температуре нормализации выше 1060° наблюдается рост зерна, а при температуре ниже 1040°C снижается длительная прочность. Температура последующего отпуска 740-780°C. Обеспечивает образование мелкодисперсных наноразмерных упрочняющих фаз.

Химический состав стали приведен в таблице 1, а механические свойства - в таблице 2.

Испытания проводили на материалах, выплавленных в вакуумно-индукционных печах. Испытание на растяжение проводили на цилиндрических образцах с диаметром рабочей части 6 мм по ГОСТ 1497 и ГОСТ 9651, испытания на жаропрочность проводили на цилиндрических образцах с диаметром рабочей части 10 мм по ОСТ 108.901.102-78.

Из таблицы 2 видно, что сталь по изобретению обеспечивает достижение поставленного технического результата: длительную прочность при температуре 620°C σ620≥140 Н/мм2, при температуре 650°C σ650≥110-115 Н/мм2, длительную пластичность при температуре 650°C δ650≥20,5%.

Сталь рекомендуется для изготовления трубопроводов и пароперегревателей котлов со сверхкритическими параметрами (температура до 650°С, давление до 35 МПа).

Таблица 1 Содержание № плавки элементов, мас.% 1 2 3 Углерод 0,0041 0,0052 0,0087 Кремний 0,008 0,057 0,09 Марганец 0,20 0,21 0,37 Хром 8,7 9,27 9,45 Молибден 0,4 0,50 0,60 Вольфрам 1,83 1,96 2,84 Кобальт 2,72 3,28 3,9 Ванадий 0,17 0,23 0,28 Ниобий 0,05 0,09 0,09 Алюминий 0,013 0,015 0,015 Никель 0,10 0,10 0,1 Азот 0,04 0,05 0,09 Бор 0,004 0,008 0,0098 Фосфор 0,003 0,003 0,003 Кальций 0,005 0,006 0,047 Сера 0,006 0,006 0,006 Церий 0,02 0,022 0,047 Олово 0,005 0,005 0,005 Магний 0,006 0,007 0,047 Свинец 0,005 0,005 0,005 Мышьяк 0,004 0,004 0,004 Кислород 0,0015 0,0015 0,002 Железо остальное остальное остальное

Таблица 2 Механические свойства стали № плавки 1 2 3 σВ, Н/мм2 715 723 725 Температура σ0.2, Н/мм2 630 645 623 20°С δ, % 20,6 22,8 20,5 ψ, % 75,0 75,1 72,0 σB, Н/мм2 350 361 354 Температура σ0.2, Н/мм2 343 350 354 650°C Длительная 23 3 24,4 24,1 пластичность δ650, % ψ, % 76 80,0 78 Температура 620°С Длительная прочность σ620 за 140 150 142 105 часов, Н/мм2 Температура Длительная прочность σ650 за 111 118 112 650°С 105 часов, Н/мм2

Похожие патенты RU2448192C1

название год авторы номер документа
ЖАРОПРОЧНАЯ СТАЛЬ 2011
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Щенкова Изабелла Алексеевна
  • Ригина Людмила Георгиевна
  • Козлов Павел Александрович
  • Дуб Владимир Алексеевич
RU2458179C1
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2013
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Дуб Алексей Владимирович
RU2524465C1
ЖАРОПРОЧНАЯ СТАЛЬ 2010
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дуб Владимир Семенович
  • Щенкова Изабелла Алексеевна
  • Козлов Павел Александрович
  • Куликов Анатолий Павлович
  • Фёдоров Александр Анатольевич
  • Воронин Анатолий Андреевич
  • Матюшин Александр Юрьевич
  • Сафьянов Анатолий Васильевич
  • Прилуков Сергей Борисович
RU2425172C1
СТАЛЬ 2006
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дуб Владимир Семенович
  • Щенкова Изабелла Алексеевна
  • Демидов Владимир Александрович
  • Куликов Анатолий Павлович
  • Марков Дмитрий Всеволодович
  • Прилуков Сергей Борисович
  • Попов Владимир Сергеевич
  • Тулин Андрей Николаевич
RU2335569C2
МАЛОАКТИВИРУЕМАЯ ЖАРОПРОЧНАЯ РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2013
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дегтярев Александр Федорович
  • Орлов Александр Сергеевич
  • Ершов Николай Сергеевич
RU2515716C1
СПОСОБ ВЫПЛАВКИ БЕЗУГЛЕРОДИСТОЙ ЖАРОПРОЧНОЙ СТАЛИ 2011
  • Дуб Алексей Владимирович
  • Дуб Владимир Алексеевич
  • Ригина Людмила Георгиевна
  • Дуб Владимир Семёнович
  • Скоробогатых Владимир Николаевич
  • Кузнецов Кирилл Юрьевич
  • Шурыгин Дмитрий Александрович
RU2469117C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ 2012
  • Дуб Алексей Владимирович
  • Ригина Людмила Георгиевна
  • Скоробогатых Владимир Николаевич
  • Щенкова Изабелла Алексеевна
  • Дуб Владимир Алексеевич
  • Живых Глеб Алексеевич
  • Щепкин Иван Александрович
  • Козлов Павел Александрович
RU2499839C1
СТАЛЬ 2006
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Щенкова Изабелла Алексеевна
  • Васильев Яков Маркович
  • Куликов Анатолий Павлович
  • Ригина Людмила Георгиевна
  • Петреня Юрий Кириллович
  • Рыбкин Александр Владимирович
  • Федоров Анатолий Анатольевич
  • Марков Дмитрий Всеволодович
  • Матюшин Александр Юрьевич
  • Сафьянов Анатолий Васильевич
RU2333285C2
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ ИЗГОТОВЛЕНИЯ ЛОПАТОК ГАЗОТУРБИННЫХ УСТАНОВОК И СПОСОБ ЕГО ТЕРМИЧЕСКОЙ ОБРАБОТКИ 2014
  • Авдюхин Сергей Павлович
  • Дуб Алексей Владимирович
  • Квасницкая Юлия Георгиевна
  • Ковалев Геннадий Дмитриевич
  • Кульмизев Александр Евгеньевич
  • Лубенец Владимир Платонович
  • Мяльница Георгий Филиппович
  • Скоробогатых Владимир Николаевич
RU2539643C1
ЖАРОПРОЧНАЯ СТАЛЬ 2006
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дуб Владимир Семенович
  • Рябов Александр Николаевич
  • Куликов Анатолий Павлович
  • Ломакин Петр Александрович
  • Рыбин Валерий Васильевич
  • Карзов Георгий Павлович
  • Филимонов Герман Николаевич
  • Теплухина Ирина Владимировна
  • Петреня Юрий Кириллович
  • Дурынин Виктор Алексеевич
  • Уточкин Юрий Иванович
  • Батов Юрий Матвеевич
  • Баландин Сергей Юрьевич
  • Чижик Татьяна Александровна
  • Лисянский Александр Степанович
  • Титова Татьяна Ивановна
  • Черняховский Сергей Александрович
  • Колпишон Эдуард Юльевич
RU2333287C2

Реферат патента 2012 года ЖАРОПРОЧНАЯ СТАЛЬ

Изобретение относится к области металлургии, в частности к составам жаропрочных сталей для тепловых энергетических установок с рабочей температурой пара до 650°C. Сталь содержит, мас.%: углерод 0,001- 0,009; кремний 0,005-0,10; марганец 0,2-0,4; хром 8,5-9,5; кобальт 2,5-4,0; молибден 0,4-0,6; вольфрам 1,8-3,0; ванадий 0,15-0,30; ниобий 0,04-0,09; алюминий не более 0,015; никель не более 0,2; кальций 0,005-0,05; азот 0,04-0,10; церий 0,02-0,05; магний 0,005-0,05; бор 0,003-0,01; фосфор не более 0,015; сера не более 0,010; свинец, олово, мышьяк не более 0,006 каждого; железо - остальное, при отношении концентрации азота к концентрации углерода: , отношении суммарного содержания азота и углерода к суммарному содержанию ванадия и ниобия: , и суммарном содержании вольфрама и молибдена не менее 2,3 и не более 3,2. Сталь имеет мелкозернистую структуру с размером зерна 10-40 нм после пластической деформации и термической обработки при температуре нормализации 1040-1060°C и отпуска 740-780°C. Сталь характеризуется высоким уровнем жаропрочности, пластичности, ударной вязкости, стабильностью при длительных изотермических выдержках. 1 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 448 192 C1

1. Жаропрочная сталь, содержащая углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, ниобий, алюминий, никель, азот, бор, фосфор, кальций, серу, церий, олово, магний, свинец и железо, отличающаяся тем, что она дополнительно содержит мышьяк при следующем соотношении компонентов, мас.%:
углерод 0,001-0,009 кремний 0,005-0,10 марганец 0,2-0,4 хром 8,5-9,5 молибден 0,4-0,6 вольфрам 1,8-3,0 кобальт 2,5-4,0 ванадий 0,15-0,30 ниобий 0,04-0,09 алюминий не более 0,015 никель не более 0,2 азот 0,04-0,10 бор 0,003-0,01 фосфор не более 0,015 кальций 0,005-0,05 сера не более 0,010 церий 0,02-0,05 олово не более 0,006 магний 0,005-0,05 свинец не более 0,006 мышьяк не более 0,006 железо остальное,


при выполнении отношения содержания азота к содержанию углерода: [N]/[C]=6-20 и отношения суммарного содержания азота и углерода к суммарному содержанию ванадия и ниобия: ([C]+[N])/([Nb]+[V])=0,1-0,5, причем суммарное содержание вольфрама и молибдена не менее 2,3 мас.%.

2. Жаропрочная сталь по п.1, отличающаяся тем, что она обладает мелкозернистой структурой с размером зерна 10-40 нм после пластической деформации и термической обработки при температуре нормализации 1040-1060°C и отпуске при температуре 740-780°C.

Документы, цитированные в отчете о поиске Патент 2012 года RU2448192C1

МЕЛКОЗЕРНИСТАЯ, МАРТЕНСИТНАЯ НЕРЖАВЕЮЩАЯ СТАЛЬ И СПОСОБ ЕЕ ПРОИЗВОДСТВА 2004
  • Бак Роберт Ф.
RU2321670C2
Стабилизированный конвертор 1978
  • Воробьев Игорь Алексеевич
  • Берзиньш Ян Янович
SU765950A2
JP 4455579 B2, 21.04.2010
JP 9122971 A, 13.05.1997
Инверсионно-вольтамперометрический способ определения 3-оксиантраниловой кислоты 1988
  • Каплин Анатолий Александрович
  • Анисимова Любовь Сергеевна
  • Слипченко Валентина Федоровна
SU1516938A1

RU 2 448 192 C1

Авторы

Дуб Алексей Владимирович

Скоробогатых Владимир Николаевич

Дуб Владимир Алексеевич

Ригина Людмила Георгиевна

Щенкова Изабелла Алексеевна

Козлов Павел Александрович

Фёдоров Александр Анатольевич

Сафьянов Анатолий Васильевич

Фирсов Борис Николаевич

Даты

2012-04-20Публикация

2011-04-15Подача