СПОСОБ ПРОИЗВОДСТВА СТАЛИ Российский патент 2013 года по МПК C21C7/04 C21C7/10 

Описание патента на изобретение RU2499839C1

Изобретение относится к черной металлургии, конкретно к способу производства сталей с низким содержанием углерода, преимущественно для нужд энергетики и создания оборудования, работающего в условиях суперсверхкритических параметров пара.

Одной из базовых проблем при создании тепловых энергоблоков с суперсверхкритическими параметрами пара (температура до 650°C и давление пара от 30 до 35 МПа) является необходимость разработки жаропрочных и относительно экономичных конструкционных материалов и, в том числе, для пароперегревателей и паропроводов. В связи с этим поставлена задача разработки способов производства новых жаропрочных сталей, обеспечивающих требуемый уровень длительной прочности σ105 не менее 98 Н/мм2 при температуре 650°C.

Известен способ выплавки стали, включающий выплавку полупродукта в дуговой сталеплавильной печи, перелив металла в ковш УКП, рафинирование, легирование, доводку до заданного химического состава.

(Бородулин Г.М., Мошкевич Е.И. Нержавеющая сталь, - М., Металлургия, - 1973).

Недостатком известного способа является то, что во время выплавки не ведется контроль окисленности стали. Количество раскислителей и их тип определяется стихийно. В данном способе определение количества раскислителей определяется с учетом имеющихся данных об активности кислорода в жидком полупродукте после сталеплавильной печи.

Известен способ внепечной обработки стали, включающий раскисление ее в ковше алюминием, продувку аргоном и введение кальция, отличающийся тем, что в процессе вакуумирования металл продувают аргоном.

(Поволоцкий Д.Я., Рощин В.Е., Мальков Н.В. Электрометаллургия стали и ферросплавов. - М.: Металлургия, - 1995).

Недостатком данного известного способа является использование для раскисления алюминия и кальциям. Однако некоторые стали имеют ограничения по содержанию алюминия, кальция и кремния. Поэтому раскисление таких сталей алюминием приводит к увеличению содержания неметаллических включений типа корунд, а раскисление кальцием - к появлению крупных глобулярных включений. И одни и другие включения негативно влияют на пластические свойства стали.

Известен способ производства стали, включающий выплавку металла в сталеплавильном агрегате, выпуск расплава в ковш, контроль химического состава расплава, легирование, раскисление, вакуумирование и последующую разливку. Причем известный способ предусматривает контроль содержания азота в расплаве и его коррекцию добавлением в ковш твердых азотсодержащих легирующих компонентов и/или продувкой расплава газообразным азотом.

(RU 2266338, C21C 7/04, опубликовано 20.12.2005).

Недостатком способа является то, что при доводке химического состава стали и раскислении контроль содержания кислорода в стали и коррекция его количества не производится. Поэтому, при повышенном содержании в стали кислорода высока вероятность образования избыточного количества оксидных неметаллических включений и снижение эксплуатационных свойств стали. Кроме того, образование нитридов алюминия снижет ударную вязкость и длительную прочность стали.

Задачей и техническим результатом изобретения использования предлагаемого изобретения является повышение качества выплавляемой стали, уменьшение содержания неметаллических включений, повышение механических и эксплуатационных свойств стали.

Технический результат достигается тем, что способ получения стали включает выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш, контроль химического состава расплава, легирование, раскисление, вакуумирование и разливку, причем легирование и раскисление расплава дополнительно ведут редкоземельными металлами и/или их лигатурами, при этом легирование азотом проводят перед завершением раскисления введением в ковш твердых азотсодержащих материалов и/или продувкой газообразным азотом, а суммарное количество раскислителей, вводимое в расплав для достижения заданного содержания кислорода в стали, определяют по формуле:

ΣR=1,2÷3,0(a o-[%Oгот], где

ΣR - суммарное содержание раскислителей, мас.%;

a o - активность кислорода, мас.%;

[%Oгот] - заданное содержание кислорода в стали, мас.%.

Технический результат также достигается тем, что легирование и раскисление ведут редкоземельными металлами, выбранными из группы: лантан, церий, неодим и празеодим, или их лигатурами, не содержащими кремний; выплавляют сталь, содержащую углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, кальций, ниобий, алюминий, никель, азот, церий, лантан, бор, фосфор, серу, свинец, олово, мышьяк, кислород и железо при следующем соотношении компонентов, мас.%: углерод 0,01-0,02; кремний 0,05-0,10; марганец 0,2-0,4; хром 8,0-9,5; молибден 0,4-0,6; вольфрам 1,8-3,0; кобальт 2,5-4,0; ванадий 0,15-0,30; кальций 0,005-0,05; ниобий 0,04-0,09; алюминий не более 0,015; никель не более 0,2; азот 0,04-0,07; церий 0,02-0,05; лантан 0,005-0,05; бор 0,003-0,01; фосфор не более 0,015; сера не более 0,010; свинец не более 0,006; олово не более 0,006; мышьяк не более 0,006; кислород не более 0,0035; железо остальное, при условии, что для суммарного содержания углерода, бора и азота выполняется условие:

[C]+[N]+[B]=0,05-0,09,

а для содержания ванадия и ниобия справедливо отношение:

[V]:[Nb]~1:4, где

[C]; [N]; [B]; [V]; [Nb] - содержание углерода, азота, бора, ванадия и ниобия, соответственно, выраженная в массовых процентах; суммарное содержание редкоземельных металлов не превышает 0,1% массы расплава стали; твердые азотсодержащие легирующие материалы вводят в виде фракции размером 10÷30 мм; продувку газообразным азотом ведут с переменной интенсивностью при расходе азота 100 1000 л/мин.

Дополнительное легирование и раскисление расплава стали редкоземельными металлами и/или их лигатурами, в том числе не содержащими кремний, наиболее эффективно при использовании металлов, выбранных из группы: лантан, церий, неодим и празеодим, при их суммарном содержании не более 0,1% массы расплава стали. При этом улучшаются механические свойства стали, и увеличивается величина, особенно при введении лантана, предела текучести. По сравнению с образующимися при раскислении оксидами алюминия и кальция, присутствие которых снижает качество стали, оксиды редкоземельных металлов, в частности, лантаноидов, мелкодисперсные (30÷40·10-9 м) и имеют плотность, близкую плотности стали, что способствует повышению служебных свойств стали, особенно длительной прочности и ударной вязкости. Используемые редкоземельные металлы обеспечивают более эффективное снижение уровня содержания кислорода, так как являются более сильными раскислителями, чем алюминий, кремний и марганец. При этом для сталей, работающих в условиях суперсверхкритических параметров пара, кремний и марганец, способствующие росту зерна в стали, должно быть ограничено. Кроме того, использование редкоземельных металлов будет способствовать более эффективной десульфурации стали что, безусловно, повысит ее качество и снизит содержание включений типа сульфиды и оксисульфиды.

Легирование азотом проводят перед завершением раскисления введением в ковш твердых азотсодержащих материалов (азотированных ферросплавов хрома, ванадия и т.д.) и/или продувкой газообразным азотом. Наиболее эффективно введение твердых азотсодержащих легирующих материалов в виде фракции размером 10÷30 мм. При введении ферросплава с размером фракции менее 10 мм, пылевидная фракция и мелкие кусочки могут быть ассимилированы шлаком не успев расплавиться и обогатить расплав азотом, и его содержание в готовом металле будет меньше заданного. Если куски ферросплава велики, то при их растворении происходит бурное выделение газообразного азота в атмосферу печи из-за местного перенасыщения им металла, а содержание азота в металле опять будет меньше заданного.

При продувке газообразным азотом с переменной интенсивностью усвоение азота увеличивается в среднем на 15-18%. При продувке с интенсивностью менее 100 л/мин усвоение азота невелико из-за недостаточного эмульгирования и взаимодействия металла с азотом. При продувке с интенсивностью более 1000 л/мин барботаж ванны слишком велик, что может приводить к выбросам металла.

Сочетание продувка азотом и раскисления с использованием редкоземельных металлов из группы: лантан, церий, неодим и празеодим, позволяет более эффективно снизить содержание кислорода и водорода в стали. Уменьшение образования гидридов и снижение содержания водорода позволяет использовать способ по изобретению для выплавки флокеночувствительных сталей, большинство которых относится к материалам для новых энергоустановок, рассчитанных на суперсверхкритические параметры пара.

По предлагаемому способу осуществили выплавку конструкционной стали: выплавку стали в сталеплавильном агрегате - дуговой сталеплавильной печи садкой 20 т, внепечную обработку после выпуска расплава в ковш установки АКОС, контроль химического состава расплава стандартными методами экспресс-анализа, в том числе определение активности кислорода по показанию датчика окисленности, легирование азотом проводили введением азотсодержащих лигатур перед завершением раскисления и продувкой азотом. Ведение продувки с переменной интенсивностью позволило достичь лучших результатов, потому что наибольшая степень удаления примесей и перемешивания металла достигается в начале и после окончания продувки во время всплывания пузырьков, и снизить расход азота, при повышении качества готового металла.

Таблица интенсивности продувки: Время, мин 1 2 3 4 5 6 7 8 9 10 Интенсивность, л/мин. 300 500 600 800 600 400 200 800 400 200

После легирования и раскисления сталь вакуумировали и разливали сифоном на слитки, массой по 5 т.

В процессе легирования и раскисления периодически контролировали активность кислорода в расплаве и по формуле ΣR=1,2÷3,0(a o-[%Oгот], где: ZR - суммарное содержание раскислителей, мас.%; a o - активность кислорода, мас.%; [%Oгот] - заданное содержание кислорода в стали, мас.%, определяли суммарное количество раскислителей, которое вводили в расплав до достижения заданного содержания кислорода в стали на уровне не более 0,0035 мас.%.

Способ реализовали для выплавки стали с нитридно-боридным упрочнением, содержащую углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, кальций, ниобий, алюминий, никель, азот, церий, лантан, бор, фосфор, серу, свинец, олово, мышьяк, кислород и железо.

Химический состав стали приведен в таблице 1. При этом для суммарного содержания углерода, бора и азота было выполнено условие: [C]+[N]+[B]=0,05-0,09, а для содержания ванадия и ниобия [V]:[Nb]~1:4, где [C]; [N]; [B]; [V]; [Nb] - содержание углерода, азота, бора, ванадия и ниобия, соответственно, выраженная в массовых процентах.

Параметры плавки и результаты исследования металла приведены в таблице 2.

Качественный состав стали, содержание ее компонентов и соотношения отдельных компонентов в сочетании со способом по изобретению обеспечивают достижение длительной прочности стали σ 10 5 620 = 140 Н/мм 2 , σ 10 5 650 120 Н/мм 2 и длительной пластичности σ 10 5 650 2 0,5 % . Такая сталь пригодна для работы в условиях сверхкритических параметров пара.

Таблица 1 Химический состав стали, выплавленной в дуговой печи Содержание компонентов, мас.% Номер плавки Известный 1 2 3 C 0,015 0,016 0,014 0,019 Si 0,047 0,049 0,053 0,057 Mn 0,296 0,282 0,290 0,279 Cr 9,03 9,09 9,22 9,00 Mo 0,456 0,462 0,476 0,466 W 1,94 2,02 2,08 2,03 Co 3,10 3,10 3,22 3,13 V 0,227 0,227 0,229 0,219 Ca 0,009-0,01 Nb 0,06 0,067 0,063 0,066 Al 0,010 0,010 0,014 0,012 Ni N2 0,06 0,05 0,065 0,07 Ce на уровне 0,03 La на уровне 0,03 B - 0,008 0,003 0,007 P 0,003 0,003 0,003 0,003 S 0,006 0,006 0,006 0,006 Pb, Sn, As, менее 0,001 каждый O2 не более 0,0035 Fe остальное

Таблица 2 Содержание углерода, азота, бора и кислорода и технологические параметры плавки. Содержание компонентов, мас.% Компоненты Известное решение 1 2 3 азот 0,07 0,07 0,065 0,07 кислород 0,018 0,0015 0,0014 0,0011 углерод 0,015 0,016 0,014 0,019 бор - 0,008 0,003 0,007 Параметры плавки Температура при вакуумировании, °C 1620 1680 1650 1690 Температура при раскислении, °C 1610 1620 1600 1600 Давление при вакуумировании, мм рт.ст. 5·10-3 4·10-3 5·10-3 9·10-3 Скорость подачи азота, л/мин 500 600 100 800 Парциальное давление азота при легировании, мм рт.ст. - 610 600 590 Парциальное давление азота при разливке, мм рт.ст. - 610 600 590

Похожие патенты RU2499839C1

название год авторы номер документа
СПОСОБ ВЫПЛАВКИ БЕЗУГЛЕРОДИСТОЙ ЖАРОПРОЧНОЙ СТАЛИ 2011
  • Дуб Алексей Владимирович
  • Дуб Владимир Алексеевич
  • Ригина Людмила Георгиевна
  • Дуб Владимир Семёнович
  • Скоробогатых Владимир Николаевич
  • Кузнецов Кирилл Юрьевич
  • Шурыгин Дмитрий Александрович
RU2469117C1
ЖАРОПРОЧНАЯ СТАЛЬ 2011
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Щенкова Изабелла Алексеевна
  • Ригина Людмила Георгиевна
  • Козлов Павел Александрович
  • Дуб Владимир Алексеевич
RU2458179C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ 2016
  • Дуб Владимир Семенович
  • Марков Сергей Иванович
  • Лебедев Андрей Геннадьевич
  • Ромашкин Александр Николаевич
  • Куликов Анатолий Павлович
  • Баликоев Алан Георгиевич
  • Мальгинов Антон Николаевич
  • Толстых Дмитрий Сергеевич
  • Новиков Сергей Владимирович
  • Корнеев Антон Алексеевич
  • Щепкин Иван Александрович
  • Новиков Владимир Александрович
  • Беликов Сергей Владимирович
  • Дуб Владимир Алексеевич
  • Ефимов Семен Викторович
RU2639080C1
СПОСОБ ПОЛУЧЕНИЯ НИЗКОЛЕГИРОВАННОЙ КОРРОЗИОННОСТОЙКОЙ СТАЛИ ДЛЯ ПРОИЗВОДСТВА ПРОКАТА 2016
  • Мальцев Андрей Борисович
  • Краснов Алексей Владимирович
  • Салиханов Павел Алексеевич
  • Беляев Алексей Николаевич
  • Пешеходов Владимир Александрович
  • Ключников Александр Евгеньевич
RU2639754C1
ХЛАДОСТОЙКАЯ СТАЛЬ 2017
  • Марков Сергей Иванович
  • Дуб Владимир Семенович
  • Баликоев Алан Георгиевич
  • Орлов Виктор Валерьевич
  • Косырев Константин Львович
  • Лебедев Андрей Геннадьевич
  • Петин Михаил Михайлович
RU2648426C1
ХЛАДОСТОЙКАЯ СТАЛЬ ДЛЯ УСТРОЙСТВ ХРАНЕНИЯ ОТРАБОТАВШИХ ЯДЕРНЫХ МАТЕРИАЛОВ 2022
  • Дегтярев Александр Фёдорович
  • Скоробогатых Владимир Николаевич
  • Муханов Евгений Львович
  • Дуб Алексей Владимирович
RU2804233C1
ТЕПЛОСТОЙКАЯ И РАДИАЦИОННОСТОЙКАЯ СТАЛЬ 2021
  • Марков Сергей Иванович
  • Баликоев Алан Георгиевич
  • Толстых Дмитрий Сергеевич
  • Иванов Иван Алексеевич
  • Дуб Владимир Семенович
  • Тахиров Асиф Ашур-Оглы
  • Петин Михаил Михайлович
  • Тохтамышев Аллен Николаевич
RU2773227C1
КОНСТРУКЦИОННАЯ КРИОГЕННАЯ АУСТЕНИТНАЯ ВЫСОКОПРОЧНАЯ СВАРИВАЕМАЯ СТАЛЬ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2015
  • Шиганов Игорь Николаевич
  • Старожук Евгений Андреевич
  • Грезев Анатолий Николаевич
  • Мисюров Александр Иванович
  • Третьяков Роман Сергеевич
  • Шишов Алексей Юрьевич
  • Якушин Борис Федорович
  • Филонов Михаил Рудольфович
  • Глебов Александр Георгиевич
  • Капуткина Людмила Михайловна
  • Капуткин Дмитрий Ефимович
  • Киндоп Владимир Эдельбертович
  • Свяжин Анатолий Григорьевич
  • Смарыгина Инга Владимировна
  • Блинов Евгений Викторович
RU2585899C1
ЖАРОПРОЧНАЯ СТАЛЬ 2011
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Дуб Владимир Алексеевич
  • Ригина Людмила Георгиевна
  • Щенкова Изабелла Алексеевна
  • Козлов Павел Александрович
  • Фёдоров Александр Анатольевич
  • Сафьянов Анатолий Васильевич
  • Фирсов Борис Николаевич
RU2448192C1
КОНСТРУКЦИОННАЯ КРИОГЕННАЯ АУСТЕНИТНАЯ ВЫСОКОПРОЧНАЯ СВАРИВАЕМАЯ СТАЛЬ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2013
  • Григорьянц Александр Григорьевич
  • Шиганов Игорь Николаевич
  • Старожук Евгений Андреевич
  • Грезев Анатолий Николаевич
  • Мисюров Александр Иванович
  • Третьяков Роман Сергеевич
  • Шишов Алексей Юрьевич
  • Якушин Борис Федорович
  • Филонов Михаил Рудольфович
  • Глебов Александр Георгиевич
  • Капуткина Людмила Михайловна
  • Капуткин Дмитрий Ефимович
  • Киндоп Владимир Эдельбертович
  • Свяжин Анатолий Григорьевич
  • Смарыгина Инга Владимировна
  • Блинов Евгений Викторович
RU2545856C2

Реферат патента 2013 года СПОСОБ ПРОИЗВОДСТВА СТАЛИ

Изобретение относится к черной металлургии, в частности к производству сталей с низким содержанием углерода, преимущественно для нужд энергетики и создания оборудования, работающего в условиях сверхкритических параметров пара. Способ включает выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш, контроль химического состава расплава, легирование, раскисление, вакуумирование и разливку, причем легирование и раскисление расплава дополнительно ведут редкоземельными металлами и/или их лигатурами, при этом легирование азотом проводят перед завершением раскисления введением в ковш твердых азотсодержащих материалов и/или продувкой газообразным азотом, а суммарное количество раскислителей, вводимое в расплав для достижения заданного содержания кислорода в стали, определяют по формуле: ΣR=1,2÷3,0(ао-[%Огот], где ΣR - суммарное содержание раскислителей, мас.%, aо - активность кислорода в расплаве, мас.%, [%Oгот] - заданное содержание кислорода в стали, мас.%. Изобретение позволяет повысить качество выплавляемой стали, уменьшить содержане неметаллических включений, а также повысить механические и эксплуатационные свойства стали. 5 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 499 839 C1

1. Способ получения стали, включающий выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш, контроль химического состава расплава, легирование азотом и раскисление, вакуумирование и разливку, отличающийся тем, что легирование и раскисление расплава дополнительно ведут редкоземельными металлами и/или их лигатурами, при этом легирование азотом проводят перед завершением раскисления введением в ковш твердых азотсодержащих материалов и/или продувкой газообразным азотом, а суммарное количество раскислителей, вводимое в расплав для достижения заданного содержания кислорода в стали, определяют по формуле:
ΣR=1,2÷3,0(ао-[%Огот],
где ΣR - суммарное содержание раскислителей, мас.%;
aо - активность кислорода в расплаве, мас.%;
[%Oгот] - заданное содержание кислорода в стали, мас.

2. Способ по п.1, отличающийся тем, что легирование и раскисление ведут редкоземельными металлами, выбранными из группы: лантан, церий, неодим и празеодим, или их лигатурами, не содержащими кремний.

3. Способ по п.1, отличающийся тем, что выплавляют сталь, содержащую углерод, кремний, марганец, хром, молибден, вольфрам, кобальт, ванадий, кальций, ниобий, алюминий, никель, азот, церий, лантан, бор, фосфор, серу, свинец, олово, мышьяк, кислород и железо, при следующем соотношении компонентов, мас.%:
углерод 0,01-0,02 кремний 0,05-0,10 марганец 0,2-0,4 хром 8,0-9,5 молибден 0,4-0,6 вольфрам 1,8-3,0 кобальт 2,5-4,0 ванадий 0,15-0,30 кальций 0,005-0,05 ниобий 0,04-0,09 алюминий не более 0,015 никель не более 0,2 азот 0,04-0,07 церий 0,02-0,05 лантан 0,005-0,05 бор 0,003-0,01 фосфор не более 0,015 сера не более 0,010 свинец не более 0,006 олово не более 0,006 мышьяк не более 0,006 кислород не более 0,0035 железо остальное,


при этом суммарное содержание углерода, бора и азота определяется из условия:
[C]+[N]+[B]=0,05-0,09,
а для содержания ванадия и ниобия установлено отношение:
[V]:[Nb]=1:4,
где [С]; [N]; [В]; [V]; [Nb] - содержание углерода, азота, бора, ванадия и ниобия соответственно, выраженное в массовых процентах.

4. Способ по п.1, отличающийся тем, что суммарное содержание редкоземельных металлов не превышает 0,1% массы расплава стали.

5. Способ по п.1, отличающийся тем, что твердые азотсодержащие легирующие материалы вводят в виде фракции размером 10÷30 мм.

6. Способ по п.1, отличающийся тем, что продувку газообразным азотом ведут с переменной интенсивностью при расходе азота 100-1000 л/мин.

Документы, цитированные в отчете о поиске Патент 2013 года RU2499839C1

СПОСОБ МИКРОЛЕГИРОВАНИЯ СТАЛИ АЗОТОМ 2004
  • Сеничев Г.С.
  • Дьяченко В.Ф.
  • Сарычев А.Ф.
  • Николаев О.А.
  • Сарычев Б.А.
  • Чигасов Д.Н.
  • Павлов В.В.
RU2266338C2
Способ микролегирования стали азотом 1990
  • Бурлака Геннадий Викторович
  • Монастырская Алевтина Ивановна
  • Новолодский Виктор Павлович
  • Пан Александр Валентинович
  • Третьяков Михаил Андреевич
  • Паляничка Владимир Александрович
  • Спирин Виктор Андреевич
  • Гордиенко Михаил Силович
  • Ильин Валерий Иванович
  • Топычканов Борис Иванович
SU1731826A1
СПОСОБ ЛЕГИРОВАНИЯ СТАЛИ АЗОТОМ 0
  • Изобретени В. Г. Куклев, А. Г. Шалимов, С. Г. Воинов, А. И. Шмырев, Г. Н. Окороков, В. К. Шатунов, К. К. Жданович Э. В. Верховцев
  • Вители Центральный Научно Исследовательский Институт Черной Металлургии И. П. Бардина Ижевский Металлургический Завод
SU371278A1
Цифровой термометр 1985
  • Тер-Мартиросян Мартирос Григорьевич
  • Шахкамян Самвел Седракович
SU1296856A1

RU 2 499 839 C1

Авторы

Дуб Алексей Владимирович

Ригина Людмила Георгиевна

Скоробогатых Владимир Николаевич

Щенкова Изабелла Алексеевна

Дуб Владимир Алексеевич

Живых Глеб Алексеевич

Щепкин Иван Александрович

Козлов Павел Александрович

Даты

2013-11-27Публикация

2012-09-21Подача