КОМПОЗИЦИЯ, ОБЛАДАЮЩАЯ КАПИЛЛЯРОПРОТЕКТИВНОЙ АКТИВНОСТЬЮ НА ОСНОВЕ ДИГИДРОКВЕРЦЕТИНА, И СПОСОБ ЕЕ ПОЛУЧЕНИЯ Российский патент 2012 года по МПК A61K36/15 A61K33/10 A61P9/14 

Описание патента на изобретение RU2451517C1

Изобретение относится к химико-фармацевтической промышленности, а именно к производству биологически активных средств на основе растительного сырья.

Известна биологически активная добавка к пище «Капилар» [Свидетельство о государственной регистрации №77.99.23.3.У.2264.3.06 от 05.03.2006], в качестве действующей основы которой используется флавоноид дигидрокверцетин. Недостатком этого препарата является низкая биодоступность дигидрокверцетина из-за его низкой водорастворимости - ~1 г/литр. Вследствие этого эффективность препарата не достигает теоретически возможной, как если бы действующее вещество - дигидрокверцетин - обладал повышенной растворимостью в водных растворах.

Известен способ получения быстрорастворимых композиций лекарственных средств и биологически активных добавок путем механической обработки ударно-истирающими воздействиями смесей биологически активных веществ кислотной природы с карбонатами металлов до образования агломерированных частиц размером 30-300 микрометров. Однако вышеуказанный способ применим только к биологически активным веществам - органическим кислотам - образующим соли со щелочными и щелочноземельными металлами (патент №2288594 от 2006 г.).

Известно получение из водных растворов комплексов дигидрокверцетина с ионами Ca2+, Mg2+ и Cu2+ (Авт. Дисс. на соиск. Кхн, Иоффе И.Д., Нижегородский гос. техн. ун-т 2002 г.). Источниками этих ионов являются водорастворимые соли - сульфаты, хлориды и ацетаты. Комплексы щелочноземельных металлов образуются с длительным - более 2 месяцев индукционным периодом. Комплекс меди образуется быстрее, однако выпадает в осадок, то есть его растворимость ниже растворимости исходного дигидрокверцетина. Все полученные комплексы являются индивидуальными химическими соединениями - производными дигидрокверцетина. При образовании этих соединений изменяется электронная структура молекул, что отражают характерные спектры поглощения в УФ и видимом диапазоне, которые отличаются от аналогичных спектров исходных соединений.

Недостатком известного способа является то, что получают новые вещества с неизвестными фармакологическими характеристиками, которые не могут без специальных испытаний использоваться в составе БАД и лекарственных средств. Кроме того, комплексы на основе ионов меди обладают повышенной токсичностью и полностью неприменимы в составе БАД и лекарственных средств.

Задачей настоящего изобретения является создание сухой пероральной композиции на основе дигидрокверцетина, обладающей повышенной фармакологической (капилляропротективной) активностью.

Технический результат заключается в повышении растворимости субстанции дигидрокверцетина в водной среде и повышении капилляропротективного действия дигидрокверцетина по сравнению с базовой активностью дигидрокверцетина.

Поставленная задача решается тем, что композиция, обладающая капилляропротективной активностью на основе дигидрокверцетина, дополнительно содержит основной карбонат магния в соотношении от 4:1 до 1:4 по весу соответственно, а также способом получения этой композиции, характеризующимся тем, что смешивают субстанции дигидрокверцетина и основного карбоната магния в соотношении от 4:1 до 1:4 по весу соответственно и далее смесь подвергают механической обработке путем ударно-истирающих воздействий до образования агломератов измельченных частиц с размерами от 1 до 70 микрон.

В основу выбора состава композиции положена обнаруженная зависимость повышения водорастворимости дигидрокверцетина в суспензиях с карбонатами щелочноземельных металлов. Известно, что молекулы дигидрокверцетина обладают слабыми кислотными свойствами. Вместе с тем, соли дигидрокверцетина и щелочных и щелочноземельных металлов в чистом виде не выделены, вероятно, вследствие его малой кислотности.

Тем не менее, обнаружено повышение его растворимости при увеличении pH растворов. В таблице 1 представлены данные по растворимости субстанции дигидрокверцетина в водном растворе в зависимости от pH.

Таблица 1. pH Концентрация, г/л 4,7 0,64 6,8 0,95 7,1 1,87 7,26 2,5 7,43 3,16 7,67 5,2 8,00 10,2

С другой стороны, известно, что практически нерастворимые в нейтральной воде карбонаты щелочноземельных металлов в водных суспензиях увеличивают ее pH в слабощелочную область.

Из фармакологически применимых карбонатов щелочноземельных металлов - карбонатов кальция и магния - выбран основной карбонат магния (3MgCO3×Mg(OH)2×2H2O или MgCO3×Mg(OH)2×2H2O), как обеспечивающий более значительное повышение pH в водных суспензиях. Таким образом, путем сочетания вышеуказанных факторов достигается результат увеличения растворимости дигидрокверцетина в водной суспензии порошкообразных смесей дигидрокверцетина и основного карбоната магния. Соотношения компонентов дигидрокверцетина и основного карбоната магния выбраны от 4:1 до 1:4 по весу соответственно. При этом увеличение содержания дигидрокверцетина более, чем в представленном соотношении, не позволяет достичь существенного для фармакологического эффекта увеличения растворимости, а снижение его содержания менее, чем в представленном соотношении, приведет к избытку вспомогательного вещества - карбоната магния и, следовательно, к излишней массе единичной дозы лекарственного средства или БАД.

Кроме того, в основу способа получения композиции положено обнаруженное явление агрегации (агломерации) частиц твердых веществ при интенсивной механической обработке ударно-истирающими воздействиями, например, в шаровых мельницах. При этом, если обрабатывается смесь различных порошкообразных веществ, то сначала происходит измельчение исходных частиц, а затем их агрегация с образованием агломератов композитного состава. Таким образом, можно получать твердую дисперсную систему веществ потенциальных реагентов, подготовленных к ускоренному взаимодействию под влиянием внешних воздействий, в частности при гидратации. В настоящем изобретении использовано это явление агрегации для получения композиции дигидрокверцетина и основного карбоната магния. Для этого смеси этих веществ подвергаются механической обработке ударно-истирающими воздействиями в мельницах, где происходит одновременное смешение, измельчение и агрегация измельченных частиц исходных компонент. Порошки исходных веществ дигидрокверцетина и основного карбоната магния могут иметь размеры частиц от 1 до 100 микрон. На фиг.1 представлена микрофотография порошка субстанции основного карбоната магния. На фиг.2 представлена микрофотография порошка субстанции дигидрокверцетина (ДГК).

В результате механической обработки образуется полидисперсный порошок с размерами частиц от ~1 до 70 микрон. На фиг.3 представлена микрофотография механически активированной смеси ДГК и карбоната магния при соотношении 3:2 по весу соответственно.

Большие частицы (10-50 микрон) преимущественно представляют собой композитные агломераты более мелких частиц. За счет образования прочных агломератов частиц получаемый порошок не подвержен расслаиванию на исходные компоненты при хранении, перегрузке, таблетировании. В случае растворения «неагломерированной» смеси порошков реагентов частицы по отдельности диспергируются в воде и происходит медленное (несколько часов) растворение дигидрокверцетина. Процесс механической обработки проводится без добавления воды, в «сухих» условиях. Полученные порошкообразные композиции дигидрокверцетина и основного карбоната магния могут смешиваться с другими веществами целевого назначения и использоваться в дозированном виде - «рассыпок» порошков и гранул, а также таблеток.

Таким образом, согласно приведенному описанию, обнаруженное нами явление повышения растворимости дигидрокверцетина из композиций с основным карбонатом магния, а также образование агломератов частиц этих веществ в условиях интенсивных ударно-истирающих воздействий отвечает критерию новизны.

Настоящее изобретение иллюстрируется следующими примерами.

1. Исследование растворимости дигидрокверцетина из композиций с основным карбонатом магния.

Смеси дигидрокверцетина от различных производителей с основным карбонатом магния, взятые в соотношениях 1:4, 3:2 и 4:1 по весу соответственно, были подвергнуты обработке ударно-истирающими воздействиями в шаровой валковой мельнице ВМ-1 до получения порошков, состоящих преимущественно из агломерированных частиц. Затем была определена растворимость дигидрокверцетин, для чего 3 г навески исследуемого материала растворяли в 50 см3 дистиллированной воды при +20°C на магнитной мешалке (60-100 об/мин). Аликвоты раствора (по 5 см3) отбирались через 20 мин и 2 часа после начала растворения и немедленно фильтровались. Концентрация ДГК в отобранных аликвотах определялась с помощью ВЭЖХ. Полученные данные показывают, что во всех случаях исследованных твердых дисперсных систем ДГК с использованными вспомогательными веществами, его равновесная концентрация в водном растворе достигается уже за 20 мин перемешивания. В таблице 2 представлены данные по растворимости ДГК в механохимически полученных композициях с карбонатами кальция и магния.

Таблица 2. № п.п. Содержание ДГК, вес.% Содержание основного карбоната магния, вес.% Соотношение ДГК и основного карбоната магния Растворимость ДГК, г/л Увеличение растворимости ДГК, p 2 60,0* 40,0 3:2 13,00 17,3 3 60,0** 40,0 3:2 24,30 32,4 4 60,0*** 40,0 3:2 20,00 26,7 5 60,0**** 40,0 3:2 7,60 20,0 6 20,0* 80,0 1:4 13,5 34,7 7 80,0* 20,0 4:1 4,17 11,0 * - дигидрокверцетин, производитель №1
** - дигидрокверцетин, производитель №2
*** - дигидрокверцетин, производитель №3
**** - дигидрокверцетин, производитель №4

Во всех случаях имеет место значительное повышение растворимости ДГК в композициях с основным карбонатом магния по сравнению с растворимостью чистого дигидрокверцетина.

2. Сравнительное исследование гипотензивных свойств образцов дигидрокверцетина с разными весовыми соотношениями компонентов.

Образцы тестировали в концентрации, аналогичной 25 мг для человека, т.е. 0,053 мг/мл в пересчете на содержание дигидрокверцетина. Эксперимент проводили в трех режимах: моновоздействие, лечебный режим (с предварительным нанесением норадореналина в концентрации 10-5 М) и исследование микроциркуляции. Тестированию подвергалась субстанция дигидрокверцетина (содержание ДГК не менее 98% по весу), а также ее композиции с основным карбонатом магния в различных весовых соотношениях (4:1; 3:2 и 1:4), полученные по данному способу.

Результаты исследований приведены в таблицах 3-5. В таблице 3 представлена характеристика по скорости венозного кровотока (параметр Vs) при моновоздействии (в % от начальной точки).

Таблица 3. Тестируемый состав 5 мин 10 мин 30 мин 60 мин Физиологический раствор -3,6±2,2 3,2±1,6 4,3±1,1 2,8±1,6 Дигидрокверцетин (98%) -2,2±1,5 -7,6±3,8 -9,5±1,9 -6,6±3,8 Дигидрокверцетин: MgCO3 (4:1) -4,6±3,0 -1,2±0,6 1,3±0,7 -1,2±0,6 Дигидрокверцетин: MgCO3 (3:2) 2,4±0,9 -3,7±1,0 -1,6±0,6 1,3±0,5 Дигидрокверцетин: MgCO3 (1:4) -1,6±0,6 1,1±0,6 1,8±1,2 3,2±1,8

При воздействии физиологического (контрольного) раствора изменение скорости кровотока составило около 3-4% и к концу исследования практически нивелировалось. Представленные данные свидетельствуют о том, что все три образца дигидрокверцетина с MgCO3 незначительно отличались по своему действию на скорость кровотока от контроля (физиологического раствора), тогда как дигидрокверцетин (98%) проявлял гипотензивную активность - снижение скорости венозного кровотока примерно на 7-9%, начиная с 10 минуты исследования.

В таблице 4 представлена характеристика по скорости венозного кровотока (параметр Vs) при лечебном режиме (в % от начальной точки).

Таблица 4. Тестируемый состав 5 мин 10 мин 30 мин 60 мин Норадреналин+Физиологический раствор 42,6±2,3 48,5±4,1 33,1±4,3 18,4±2,9 Норадреналин+Дигидрокверцетин (98%) 38,6±3,4 32,7±2,9 22,9±2,4 11,8±2,9 Норадреналин+Дигидрокверцетин:
MgCO3 (4:1)
40,7±3,7 36,3±3,0 18,6±4,0 9,7±3,9
Дигидрокверцетин: MgCO3 (3:2) 38,8±3,4 36,8±3,5 20,4±3,9 10,0±3,6 Норадреналин+Дигидрокверцетин: MgCO3 (1:4) 39,3±3,7 38,9±4,5 19,0±3,5 13,1±4,5

При моделировании условий повышенного артериального давления норадреналином в контроле наблюдалось повышение скорости кровотока в среднем на 40% и максимально достигало 48% на 10 мин исследования. При воздействии всех исследуемых препаратов, содержащих дигидрокверцетин, действие норадреналина снижалось примерно одинаково (в среднем на 10-15%) и проявлялось в интервале 10-30 мин после введения препаратов.

В таблице 5 представлена характеристика по скорости кровотока в микрососудах (параметр Vs), (в % от начальной точки).

Таблица 5. Тестируемый состав 5 мин 10 мин 30 мин 60 мин Физиологический раствор -4,1±1,7 2,6±1,0 4,3±1,7 3,3±1,7 Дигидрокверцетин (98%) 3,2±0,9 2,5±0,9 3,4±1,8 5,5±2,6 Дигидрокверцетин: MgCO3 (4:1) 14,6±3,9 14,2±4,1 6,6±1,7 6,4±2,1 Дигидрокверцетин: MgCO3 (3:2) 15,6±2,9 13,2±3,4 12,8±3,7 8,4±3,2 Дигидрокверцетин: MgCO3 (1:4) -4,4±2,7 2,4±1,0 2,6±1,0 -4,1±2,5

В таблице 5 представлены данные, полученные при изучении воздействия образцов дигидрокверцетина на микроциркуляцию крови. Контрольный (физиологический) раствор, как и в таблице 1, незначительно изменял ток крови в микрососудах. Усиление микроциркуляции на 12-17% в первые 10 мин наблюдалось при воздействии, когда соотношение дигидрокверцетин: MgCO3 составляло 4:1 и 3:2, после чего скорость кровотока возвращалась к норме. Образец, в котором дигидрокверцетина 98%, и образец, в котором соотношение дигидрокверцетин: MgCO3 составляло 1:4, значительного изменения скорости кровотока не вызывали, но последний на 60 минуте исследования проявлял небольшую гипотензивную активность.

Таким образом, испытания полученной композиции дигидрокверцетина и основного карбоната магния показали улучшенные характеристики растворимости дигидрокверцетина и его фармакологического действия.

Кроме того, при растворении полученных композиций молекулы дигидрокверцетина не подвергаются каким-либо изменениям, что подтверждается хроматографическими анализами ВЭЖХ. С помощью заявленного нами состава и способа получения твердой композиции удается достичь увеличенной водорастворимости дигидрокверцетина немедленно после растворения композиции без его химических изменений, что явным образом отличается от ранее технических решений - комплексов дигидрокверцетина и ионов металлов, которые не улучшают фармакологические свойства.

Похожие патенты RU2451517C1

название год авторы номер документа
КОМПОЗИЦИЯ С ПОВЫШЕННОЙ ФАРМАКОЛОГИЧЕСКОЙ АКТИВНОСТЬЮ НА ОСНОВЕ ДИГИДРОКВЕРЦЕТИНА И РАСТИТЕЛЬНЫХ ПОЛИСАХАРИДОВ (ВАРИАНТЫ) 2010
  • Душкин Александр Валерьевич
  • Метелева Елизавета Сергеевна
  • Тихонов Владимир Петрович
  • Бабкин Василий Анатольевич
  • Колесник Юрий Арсеньевич
  • Родина Ирина Алексеевна
  • Белянкина Елена Юрьевна
  • Шевченко Татьяна Владимировна
RU2421215C1
КОМПОЗИЦИЯ НА ОСНОВЕ ДИГИДРОКВЕРЦЕТИНА, ВКЛЮЧЕННОГО В ФОСФОЛИПИДНЫЕ НАНОЧАСТИЦЫ 2013
  • Ипатова Ольга Михайловна
  • Тихонова Елена Георгиевна
  • Медведева Наталья Велориковна
  • Прозоровский Владимир Николаевич
  • Дружиловская Оксана Сергеевна
  • Худоклинова Юлия Юрьевна
  • Кострюкова Любовь Викторовна
RU2536208C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОЙ ВОДОРАСТВОРИМОЙ ШИПУЧЕЙ КОМПОЗИЦИИ (ВАРИАНТЫ) 2005
  • Душкин Александр Валерьевич
  • Гуськов Сергей Александрович
  • Бугреев Владимир Николаевич
RU2288594C2
БИОПОЛИМЕРНАЯ МАТРИЦА НА ОСНОВЕ СУКЦИНАТА ХИТОЗАНА, АРАБИНОГАЛАКТАНА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2018
  • Шелепов Виктор Григорьевич
  • Углов Владимир Александрович
  • Душкин Александр Валерьевич
  • Сунцова Любовь Петровна
  • Бородай Елена Валерьевна
  • Поляков Николай Эдуардович
RU2698455C1
Пневматический генератор жидких аэрозольных частиц и средство на основе водного раствора гидрофобных соединений растительного происхождения в виде аэрозольных субмикронных частиц, полученных с использованием указанного генератора 2015
  • Сафатов Александр Сергеевич
  • Вечканов Владимир Александрович
  • Сунцова Любовь Петровна
  • Сергеев Александр Николаевич
  • Верещагин Евгений Иванович
  • Душкин Александр Валерьевич
RU2609734C2
СПОСОБ ПРИГОТОВЛЕНИЯ НАСТОЙКИ АМУРСКОГО ВИНОГРАДА 2012
  • Родимин Евгений Михайлович
RU2482169C1
СПОСОБ ПОЛУЧЕНИЯ БЫСТРОРАСТВОРИМЫХ ЛЕКАРСТВЕННЫХ ФОРМ ФУРАЦИЛИНА (ВАРИАНТЫ) 2014
  • Краснюк Иван Иванович
  • Степанова Ольга Ивановна
  • Беляцкая Анастасия Владимировна
  • Краснюк Иван Иванович
  • Краснюк Ольга Валентиновна
  • Попков Владимир Андреевич
  • Решетняк Владимир Юрьевич
  • Байдикова Ирина Владимировна
  • Енгашев Сергей Владимирович
RU2578456C1
Фармацевтическая композиция, обладающая антиаритмической активностью различной этиологии 2021
  • Блинова Екатерина Валериевна
  • Юрочкина Александра Михайловна
  • Скачилова София Яковлевна
  • Проскурина Оксана Владимировна
  • Блинов Дмитрий Сергеевич
  • Алешина Валентина Андреевна
  • Желтухин Николай Константинович
RU2783944C1
СПОСОБ ОЦЕНКИ РАЗДРАЖАЮЩЕГО ДЕЙСТВИЯ И АКТИВНОСТИ ПРИРОДНЫХ, СИНТЕТИЧЕСКИХ СУБСТАНЦИЙ И ГОТОВЫХ ПРЕПАРАТОВ НА КУРИНЫХ ЭМБРИОНАХ МЕТОДОМ УЛЬТРАЗВУКОВОЙ ДОППЛЕРОГРАФИИ 2008
  • Тихонов Владимир Петрович
  • Шевченко Татьяна Владимировна
  • Родина Ирина Алексеевна
  • Белянкина Елена Юрьевна
  • Плигина Кира Львовна
  • Макарова Марина Николаевна
  • Гирина Марина Борисовна
RU2383888C1
ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ "МИЦЕРЕБРОФОН", ОБЛАДАЮЩАЯ НООТРОПНОЙ АКТИВНОСТЬЮ 2010
  • Большакова Анастасия Евгеньевна
  • Боришпольский Андрей Леонидович
  • Князькин Геннадий Юрьевич
  • Мельникова Нина Борисовна
  • Полухин Игорь Валентинович
  • Полухин Олег Валентинович
  • Пьянзина Ирина Петровна
RU2441657C1

Иллюстрации к изобретению RU 2 451 517 C1

Реферат патента 2012 года КОМПОЗИЦИЯ, ОБЛАДАЮЩАЯ КАПИЛЛЯРОПРОТЕКТИВНОЙ АКТИВНОСТЬЮ НА ОСНОВЕ ДИГИДРОКВЕРЦЕТИНА, И СПОСОБ ЕЕ ПОЛУЧЕНИЯ

Изобретение относится к химико-фармацевтической промышленности, а именно к производству биологически активных средств на основе растительного сырья. Композиция, обладающая капилляропротективной активностью на основе дигидрокверцетина, дополнительно содержит основной карбонат магния в соотношении от 4:1 до 1:4 по весу соответственно. Способ получения композиции заключается в том, что смешивают субстанции дигидрокверцетина и основного карбоната магния в соотношении от 4:1 до 1:4 по весу соответственно и далее смесь подвергают механической обработке путем ударно-истирающих воздействий до образования агломератов измельченных частиц с размерами от 1 до 70 микрон. Композиция на основе дигидрокверцетина и основного карбоната магния, полученная заявленным способом, обладает повышенной растворимостью дигидрокверцетина в водных растворах, увеличивает скорость кровотока в микрососудах, тем самым оказывая капилляротерапевтическое действие. При гидратации полученной композиции происходит ускоренное высвобождение дигидрокверцетина в раствор. 2 н.п. ф-лы, 5 табл., 3 ил.

Формула изобретения RU 2 451 517 C1

1. Композиция, обладающая капилляропротективной активностью на основе дигидрокверцетина, отличающаяся тем, что она дополнительно содержит основной карбонат магния в соотношении от 4:1 до 1:4 по весу соответственно.

2. Способ получения композиции по п.1, характеризующийся тем, что смешивают субстанции дигидрокверцетина и основного карбоната магния в соотношениии от 4:1 до 1:4 по весу соответственно и далее смесь подвергают механической обработке путем ударно-истирающих воздействий до образования агломератов измельченных частиц с размерами от 1 до 70 мкм.

Документы, цитированные в отчете о поиске Патент 2012 года RU2451517C1

Иоффе И.Д
Автореф
дисс
на соиск
уч
степ
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
техн
ун-т
СРЕДСТВО, ОБЛАДАЮЩЕЕ КАПИЛЛЯРОПРОТЕКТОРНОЙ АКТИВНОСТЬЮ 2009
  • Плотников Марк Борисович
  • Тюкавкина Нонна Арсеньевна
  • Алиев Олег Ибрагимович
  • Иванов Иван Сергеевич
  • Анищенко Анна Марковна
  • Сидехменова Анастасия Владиславовна
RU2414230C1
АНТИОКСИДАНТНОЕ, КАПИЛЛЯРОПРОТЕКТОРНОЕ, ПРОТИВОВОСПАЛИТЕЛЬНОЕ И АНТИГИСТАМИННОЕ СРЕДСТВО 1992
  • Соколов С.Я.
  • Тюкавкина Н.А.
  • Колхир В.К.
  • Колесник Ю.А.
  • Арзамасцев А.П.
  • Глазова Н.Г.
  • Зюзин В.А.
  • Багинская А.И.
  • Бабкин В.А.
  • Остроухова Л.А.
RU2014841C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКООБРАЗНОЙ ВОДОРАСТВОРИМОЙ ШИПУЧЕЙ КОМПОЗИЦИИ (ВАРИАНТЫ) 2005
  • Душкин Александр Валерьевич
  • Гуськов Сергей Александрович
  • Бугреев Владимир Николаевич
RU2288594C2

RU 2 451 517 C1

Авторы

Душкин Александр Валерьевич

Метелева Елизавета Сергеевна

Тихонов Владимир Петрович

Колесник Юрий Арсеньевич

Родина Ирина Алексеевна

Белянкина Елена Юрьевна

Шевченко Татьяна Владимировна

Даты

2012-05-27Публикация

2010-09-20Подача