Область техники, к которой относится изобретение
Настоящее изобретение относится к способу получения бисфенола А, исходного материала для получения пластиков, в частности поликарбонатов.
Бисфенол А ((БФА)(ВРА)), 2,2-бис-(4-гидроксифенил)пропан, называемый также р,р'-БФА-изомером, используется для получения пластиков, в частности поликарбонатов, их смесей и эпоксидных смол, а также, но в незначительных количествах, для получения фенопластов, ненасыщенных сложнополиэфирных смол, полисульфонов, поли(простой эфир)имидов и полиакриловых смол, а также полиуретанов и добавок для пластиков, среди прочего антипиренов, например, таких как тетрабромобисфенол А и фенилфосфаты БФА, и термостабилизаторов для поливинилхлорида.
В ходе разработки технологии БФА была исследована возможность его получения взаимодействием аллена, метилацетилена, 2-изопропенилфенола, 4-изопропенилфенола и изопропенилацетата с фенолом, а также реакцией перегруппировки гидроксида кумола и его взаимодействием с фенолом. Ни одна из указанных реакций не может конкурировать со способами получения БФА конденсацией фенола с ацетоном. Были исследованы многие гомогенные катализаторы, среди прочего BF3 и его аддукты с H3PO4, (C2H5)2O, HCOOH, CH3COOH, C2H5COOH, CaF2, а также HCl с BF3, AlCl3, SnCl4, SbCl5, SnF4 и SbF3 и многие другие каталитические системы. Однако способ получения БФА путем конденсации ацетона в присутствии серной кислоты или хлорида водорода в качестве катализаторов используют в промышленной практике. Альтернативным способом катализирования реакции получения БФА является использование сильно кислотных ионообменных смол (катионообменников), которые прошли все большую и большую апробацию, и, наконец, заменили способы, использующие H2SO4 или HCl в качестве катализаторов реакций конденсации. Было рекомендовано также использование сульфированных сополимеров стирола и дивинилбензола (ДВБ) и сульфированных фенолоформальдегидных смол, причем первый из указанных типов катализаторов широко используется в настоящее время в промышленном масштабе. Сначала использовались катионообменники со значительной степенью сшивки, а затем начали использоваться гелевые катионообменники с более низкой степенью сшивки (2-4 сг/г ДВБ).
Вторым важным аспектом, связанным с разработкой ионообменных катализаторов, является использование так называемых промоторов, которыми являются тиоорганические соединения, имеющие тиольную группу или способные к ее образованию в условиях реакции конденсации. Были проведены многочисленные испытания по использованию гомогенных промоторов. Однако их использование вызвало проблемы, связанные с получением продукта высокого качества. По этой причине в настоящее время все более и более популярными являются ионообменные смолы, модифицированные тиоорганическими соединениями таким образом, который обеспечивает присоединение к ним сульфоновой группы, и с этой целью наиболее часто используются аминогруппы или гетероциклические соединения, содержащие атом (атомы) азота, основного характера.
Один вариант, используемый для установки синтеза, включает многостадийную систему проточных реакторов с каталитическим неподвижным слоем, соединенных последовательно посредством теплообменников, которые способны поддерживать заданный температурный интервал в последовательных реакторах, причем отдельные варианты отличаются друг от друга подачей ацетона и посткристаллизационных растворов, получаемых на последующих стадиях выделения и очистки БФА. В случае таких вариантов реакционной системы известны и описаны среди прочего в патенте США 6414199 преимущества, получаемые в результате деления потока ацетона, подаваемого в реакторы, соединенные последовательно, которые преимущественно обеспечивают увеличение срока службы катализатора и селективность реакции конденсации, что является результатом лучшего температурного распределения в каталитическом слое, а также большими возможностями регулирования хода реакции синтеза БФА.
Были исследованы или использованы многочисленные способы выделения бисфенола А, включая дистилляцию, по меньшей мере, части фенола, воды и ацетона (главным образом, при пониженном давлении), вакуумную дистилляцию самого бисфенола А или его кристаллизацию как аддукта бисфенол А/фенол, выделение кристаллов аддукта фильтрацией и затем разложение указанного аддукта вакуумной дистилляцией фенола и паро- или азотоотгонкой или кристаллизацией из различных растворителей. Запатентован способ, состоящий из кристаллизации в расплаве неочищенного бисфенола А, полученного выделением дистилляцией непрореагировавших ацетона, воды и фенола из продуктов реакции конденсации. Описаны многочисленные примеры комбинирования указанных способов, и в документе WO 0035847 представлены суспензионная кристаллизация аддукта бисфенол А/фенол, его выделение из маточного раствора фильтрацией, разложение аддукта вакуумной дистилляцией фенола и проведение фракционированной кристаллизации неочищенного БФА, полученного таким путем.
Известны преимущества, которые являются результатом рециклирования посткристаллизационных растворов, и в случае рециклирования на стадию кристаллизации или стадию концентрирования перед кристаллизацией преимущество состоит в рециклировании непрореагировавшего фенола и некристаллизованного БФА, что значительно снижает расход исходного материала. Дополнительное преимущество в результате рециклирования маточного раствора на стадию синтеза состоит в ограничении образования 2-(2-гидроксифенил)-2-(4-гидроксифенил)пропана (так называемого о,р'-БФА-изомера), т.к. затем система более близко аппроксимирует состояние равновесия р,р'-БФА и о,р'-БФА изомеров.
В способах, в которых предусмотрено использование многостадийной системы проточных реакторов с неподвижным слоем катионообменников, представляется возможность рециклирования маточного раствора несколькими способами, так что он подается на первую стадию реакции конденсации или последующие стадии для проведения данной реакции. Наибольшее преимущество в отношении ограничения образования о,р'-БФА-изомера состоит в рециклировании маточного раствора на первую стадию синтеза, и поэтому патентная литература включает прежде всего варианты, заключающиеся в рециклировании части маточного раствора на последующие стадии синтеза в качестве только необязательной возможности без указания получаемых преимуществ (патент США 6858759).
Рециклирование маточного раствора не решает полностью проблему побочных продуктов, т.к. они накапливаются, и один способ решения данной проблемы состоит в выведении части постреакционного потока из способа с целью поддержания их концентрации на приемлемом уровне. Даже когда фенол отгоняется из указанной системы, указанный обязательный способ воздействует нежелательно на экономические показатели способа получения БФА. К способам снижения ряда указанных непредпочтительных явлений, описанных в патентной литературе, принадлежит реакция изомеризации о,р'-БФА в р,р'-БФА, в которой реакция, что используется после кристаллизации аддукта БФА/фенол, концентрация о,р'-БФА-изомера является выше, чем в равновесном состоянии, и что имеет место каталитическое разложение под влиянием кислотных (WO 0040531) или основных (PL 181992) катализаторов. Способ каталитического разложения побочных продуктов рассматривается в патентной литературе как введение к способу синтеза ПФА из продуктов указанного разложения, осуществляемого наиболее часто в присутствии макропористых ионообменных смол в качестве катализаторов. Реакция изомеризации позволяет превратить о,р'-БФА в р,р'-БФА, а также согласно некоторым сообщениям также трисфенолы, прежде всего 2,4-бис-[2-(4-гидроксифенил)изопропил]фенол (JP 08333290), появляются среди них в наиболее значительных количествах. Большинство видов побочных продуктов не превращаются в условиях реакции изомеризации. Однако их вклад в продукты, получаемые в процессе реакции конденсации ацетона и фенола в присутствии модифицированных ионообменных катализаторов, является незначительным. Принимая во внимание накапливание побочных продуктов в технологических потоках, необязательно отводить часть технологического потока. Несмотря на незначительное количество побочных продуктов, наблюдается экономический эффект, т.к. в потоке, уходящем из способа, содержание р,р'-БФА будет значительно больше, чем общее количество побочных продуктов, уходящих из способа. Более эффективным в этом отношении является, однако, способ каталитического разложения в комбинации с повторным синтезированием БФА в макропористых катионообменниках. В случае рециклирования всех летучих продуктов разложения будут появляться новые виды побочных продуктов, что делает трудным получение бисфенола А высокого качества.
Сущность изобретения
Целью настоящего изобретения является разработка способа получения бисфенола А прозрачного и стабильного цвета в жидком состоянии, который характеризуется хорошей эффективностью и селективностью.
Было неожиданно установлено, что рециклирование маточного раствора на последнюю стадию синтеза по сравнению с вариантом его рециклирования в реактор первой стадии позволяет как ограничить число побочных продуктов, иных, чем о,р'-БФА-изомер, так и получить более высокую степень конверсии при одинаковом общем времени контактирования катализатора с катионообменным катализатором.
В способе, в котором используются преимущества рециклирования маточного раствора на третью стадию реакции конденсации, и в случае использования фракционирования продуктов каталитического разложения и рециклирования в способ только фенола показатели потребления исходного материала не являются удовлетворительными ввиду того, что о,р'-БФА-изомер, который образуется в таком технологическом варианте в значительных количествах, образует в условиях каталитического разложения значительное количество изопропенилфенолов и их олигомеров, которые выводятся из способа. По этой причине способ получения бисфенола А согласно настоящему изобретению использует изомеризацию о,р'-БФА в р,р'-БФА и рециклирование изомеризата на кристаллизацию, а также каталитическое разложение потока посткристаллизационных растворов и фракционирование продуктов разложения и затем рециклирование в способ фенола, полученного только в результате процесса разложения. Это позволяет избежать проблем, связанных с новыми видами побочных продуктов, и в то же самое время обеспечить высокие показатели конверсии исходного материала в бисфенол А.
Сущность способа изобретения состоит в том, что реакция конденсации ацетона и фенола проводится в многостадийной реакционной системе с межстадийным регулированием температуры реакции и концентрации ацетона, а также регулированием концентрации воды перед последней стадией реакционной системы путем рециклирования части посткристаллизационных растворов от кристаллизации из растворителя в поток, направляемый в последний реактор, при дозировании непрерывным образом в систему реакторов, содержащих катализатор, реакционной смеси, содержащей ацетон и фенол. Затем вода, ацетон и часть фенола выпариваются из постреакционной смеси, которая затем смешивается с раствором, выходящим с фракционированной кристаллизации, растворенным в изомеризате, получаемом в способе изомеризации части потока концентрированных растворов после кристаллизации из растворителя, причем способ осуществляют с использованием макропористой сульфированной ионообменной смолы в водородной форме с диаметром пор не менее 20 нм в качестве катализатора, получаемый поток подвергается кристаллизации из растворителя, в которой выделяется аддукт бисфенола А и фенола, который (аддукт) подвергается термическому разложению с получением смеси изомеров бисфенола А, фенола и побочных продуктов, содержащей р,р'-бисфенол А в количестве не менее 90 сг/г, смесь направляется на фракционированную кристаллизацию, на которой получается чистый бисфенол А, тогда как фенол, извлеченный из технологических потоков в способе концентрирования дистилляций, термического разложения аддукта бисфенол А/фенол и от ректификации с одновременным разложением фенольных производных, содержащихся в части потока концентрированных посткристаллизационных растворов, рециклируется в многостадийную реакционную систему.
Предпочтительно, когда реакционная смесь, содержащая ацетон, фенол и продукты их конденсации, контактирует с катализатором в 2-5-стадийной реакционной системе при температуре 323-348 К, причем параметры способа выбраны так, что на выходе с первой реакционной стадии мольное соотношение изомеров о,р'-БФА: p,p'-БФА составляет не более 5:100, а на входе на последнюю реакционную стадию мольное соотношение изомеров о,р'-БФА: p,p'-БФА составляет не менее 7:100.
Предпочтительно, пропорции потоков, загружаемых в многостадийную реакционную систему, выбраны так, что мольное отношение воды к ацетону в реакционной смеси, содержащей фенол, ацетон, воду, изомеры БФА и побочные продукты, которая контактирует с катализатором при температуре 323-348 К, составляет не более 0,5 на входе первой реакционной стадии и не более 1,2 на последней реакционной стадии многостадийной реакционной системы.
Предпочтительно, смесь дистиллированных фенолов, извлеченных из технологических потоков как результат концентрирования постреакционной смеси из многостадийной реакционной системы и посткристаллизационных растворов, а также термического разложения аддукта бисфенол А/фенол и от ректификации с одновременным каталитическим разложением фенольных производных, вводится в свежий фенол и направляется на первую стадию многостадийной реакционной системы.
Предпочтительно, когда часть потока посткристаллизационных растворов от кристаллизации аддукта БФА/фенол, рециклированного в многостадийную реакционную систему, смешивается на входе на последнюю реакционную стадию с постреакционной смесью с предпоследней реакционной стадии в пропорции от 1:1 до 3:1.
Предпочтительно, посткристаллизационные растворы от кристаллизации аддукта БФА/фенол делятся на два потока, причем больший поток, содержащий не более 95 сг/г выходящего потока растворов, направляется на последнюю стадию многостадийной реакционной системы, тогда как второй поток подвергается концентрированию путем отгонки части фенола, так что массовая фракция бисфенола А в данном потоке составляет не менее 12 сг/г, и затем концентрированный поток делится на две части, одна из которых подвергается ректификации с одновременным каталитическим разложением фенольных производных, а вторая часть концентрированных посткристаллизационных растворов направляется на изомеризацию.
Предпочтительно, концентрирование постреакционной смеси из многостадийной реакционной системы выполняется так, что содержание воды в посткристаллизационных растворах от кристаллизации аддукта БФА/фенол составляет не более 0,4 сг/г.
Предпочтительно, когда кристаллизация аддукта выполняется так, что содержание p,p'-БФА-изомера в фильтрате составляет не более 12 сг/г и соотношение p,p'-БФА и о,p'-БФА изомеров составляет не менее 10:100.
Предпочтительно, ректификация с одновременным разложением фенольных производных части потока концентрированных посткристаллизационных растворов выполняется в присутствии сильных неорганических оснований КОН или NaOH при температуре, по меньшей мере, 443 К при пониженном давлении не выше 200 гПа, и параметры ректификации выбраны так, что фенол, полученный в данном способе и рециклированный в многостадийную реакционную систему, содержит не более 0,5 сг/г изопропенилфенола ((ИПФ)(IPP)).
Предпочтительно, не более 85 сг/сг потока концентрированных посткристаллизационных растворов изомеризуется в присутствии макропористого сульфированного ионообменного катализатора при температуре 328-353 К с часовой объемной скоростью жидкости ((ЧОСЖ)(LHSV)) 0,2-5 м3/(м3·ч), способ изомеризации осуществляется так, что возрастание общего количества побочных продуктов в результате изомеризации составляет не более 0,2 сг/г.
Предпочтительно, выходящий поток от фракционированной кристаллизации, обогащенный о,р'-БФА-изомером, растворяется в изомеризате при температуре не ниже 353 К в пропорции от 1:5 до 1:20.
Вариант осуществления изобретения
Пример 1
Синтез бисфенола А проводят в 3-х стадийной реакционной системе с ионообменным катализатором Amberlyst A-131, в котором 20,2 смоль/моль сульфоновых групп модифицировано 2,2-диметилтиазолидином. Условия синтеза, а также составы растворов, полученных на отдельных стадиях реакции, показаны в таблицах 1-4. Обозначения, используемые в указанных таблицах являются следующими: Ас - ацетон, Н2О - вода, PhOH - фенол, p,p'-БФА - 2,2-бис-(4-гидроксифенил)пропан, о,p'-БФА - 2-(2-гидроксифенил)-2-(4-гидроксифенил)пропан, BPR - побочные продукты, иные, чем о,p'-БФА, от реакции конденсации ацетона и фенола. ЧОСЖ определяется как число объемных единиц жидкости, протекающей за один час через единицу катализатора в состоянии, которое задается катализатором в условиях, существующих в реакторе.
Условия синтеза на стадии I реакции
(°C)
Условия синтеза на стадии II реакции
Результат объединения потоков посткристаллизационных растворов с постреакционным раствором со стадии II
Условия синтеза на стадии III реакции
На стадии I реакции раствор ацетона (2,72 сг/г) в феноле контактирует с ионообменным катализатором. Как результат прохождения реакции температура реакционного раствора повышается от 51°C на впуске реактора до 65°C на выпуске реактора, тогда как содержание р,p'-БФА-изомера увеличивается на 7,02 сг/г (таблица 1). Затем постреакционный раствор со стадии I охлаждается в мембранном теплообменнике до температуры 55°C, и затем к раствору добавляется часть ацетона в таком количестве, что его концентрация составляет 2,54 сг/г (таблица 2).
На стадии II реакции раствор ацетона, фенол и продукты их конденсации снова контактируют с ионообменным катализатором, в результате чего температура раствора повышается от 55°C до 66°C, тогда как содержание р,p'-БФА-изомера увеличивается до уровня 12,5 сг/г (состав постреакционной смеси со стадии II синтеза показан в таблице 2).
Затем постреакционная смесь со стадии II реакции смешивается с посткристаллизационными растворами от кристаллизации из растворителя от кристаллизации аддукта БФА/фенол в пропорции 1,0:1,3. Поток посткристаллизационных растворов, который используется для смешения с постреакционным раствором со стадии II, составляет 74 сг/г общего количества растворов от кристаллизации из растворителя. Составы растворов до и после смешения показаны в таблице 3.
Гомогенный раствор посткристаллизационных растворов и раствора после стадии II синтеза охлаждается до температуры 57°C, затем вводится ацетон до содержания 2,7 сг/г в данном потоке, он контактирует с ионообменным катализатором на стадии III синтеза.
В результате конденсации ацетона и фенола на стадии III синтеза температура реакционного раствора увеличивается от 57°C до 69°C, на выпуске реактора получается раствор состава, показанного в таблице 4. Раствор, выходящий из многостадийной реакционной системы, просачивается через тонкую фильтрационную сетку 100 меш и концентрируется выпариванием воды, ацетона и части фенола при температуре 125-130°C при пониженном давлении 66,66 гПа. Состав потока показан в таблице 5.
Концентрация реакционного раствора со стадии III синтеза
Кристаллизация аддукта БФА/фенол из фенольного раствора проводится в кристаллизаторе с перемешиванием. Гомогенный раствор бисфенола А состава, показанного в таблице 6, загружается в кристаллизатор, оборудованный механической мешалкой и системой охлаждения с электронным регулированием, которая способна снижать температуру с заданной скоростью.
Потоки, используемые для получения раствора для кристаллизации из растворителя, и его состав
Температура БФА-раствора снижается со скоростью 5°C/ч от 80°C до 55°C и со скоростью 1°C/ч от 55°C до 50°C. Кристаллизованный аддукт БФА/фенол выделяется из раствора фильтрацией при температуре 50°C с использованием вакуумного фильтра и без промывки кристаллов аддукта. Посткристаллизационные растворы состава, показанного в таблице 6, рециклируются в способ в соответствии с приведенными ранее методиками.
Аддукт БФА/фенол, полученный в результате описанных операций, расплавляется при температуре 120°C и подвергается термическому разложению. Разложение аддукта проводится в пленочном испарителе при температуре 165°C при пониженном давлении 26,66 гПа, затем неочищенный бисфенол А с содержанием фенола более 1,0 сг/г дополнительно отгоняется паром при температуре 170°C при давлении 20 гПа с целью снижения содержания фенола до менее 0,5 сг/г.
Часть посткристаллизационных растворов в количестве 24 сг/г общей массы растворов концентрируется дистилляцией при температурах 125-130°C при давлении 33,33 гПа. Поток растворов концентрируется до содержания 15 сг/г р,р'-БФА-изомера в растворе. Составы потоков посткристаллизационных растворов до и после концентрирования показаны в таблице 7.
Состав посткристаллизационных растворов до и после концентрирования
Концентрированные посткристаллизационные растворы делятся на две части: поток 72,5 сг/г направляется на изомеризацию, тогда как поток 27,5 сг/г разлагается каталитически с одновременной ректификацией продуктов разложения фенольных производных. Каталитическое разложение фенольных производных проводится в реакционной ректификационной колонне при температуре 190°C при давлении 160 гПа в присутствии 0,1 сг/г гидроксида натрия (NaOH). Дистиллят из ректификационной колонны подвергается повторной дистилляции с получением окончательно фенола с содержанием 4-изопропенилфенола (PIPH) менее 0,01 сг/г. Дистиллированный фенол от каталитического разложения фенольных производных рециклируется на стадию I реакции.
Часть потока концентрированных растворов в количестве 72,5 сг/г изомеризуется при температуре 65°C. Концентрированные растворы состава, показанного в таблице 7, контактируют с макропористым катализатором LEWATIT K2649 в водородной форме со средним диаметром пор 65 нм и с ЧОСЖ 0,5 м3/(м3·ч).
Выходящий поток с фракционированой кристаллизации неочищенного бисфенола А растворяется в изомеризате при температуре 87°C в пропорции 1:12,7, затем полученный раствор смешивается с концентрированной постреакционной смесью с стадии III реакции. Составы отдельных потоков показаны в таблице 6.
Очистка бисфенола А проводится путем фракционированной кристаллизации с получением конечного продукта с поликарбонатной чистотой и высокой термической стабильностью. Характеристики бисфенола А показаны в таблице 8.
Характеристики получаемого бисфенола А
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ БИСФЕНОЛА A | 2013 |
|
RU2619461C2 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БИСФЕНОЛА А | 2005 |
|
RU2370309C2 |
СПОСОБ ПОЛУЧЕНИЯ БИСФЕНОЛА А ВЫСОКОЙ ЧИСТОТЫ И ПРОИЗВОДСТВЕННАЯ УСТАНОВКА | 2007 |
|
RU2422429C2 |
СПОСОБ ПОЛУЧЕНИЯ БИСФЕНОЛА А | 2006 |
|
RU2419600C2 |
СПОСОБ ПОЛУЧЕНИЯ БИСФЕНОЛА | 2013 |
|
RU2627266C2 |
СПОСОБ ПОЛУЧЕНИЯ БИСФЕНОЛА А | 2013 |
|
RU2637311C2 |
СПОСОБ И АППАРАТУРА ДЛЯ ИЗВЛЕЧЕНИЯ БИСФЕНОЛА А | 2006 |
|
RU2417213C2 |
СПОСОБ ОЧИСТКИ БИСФЕНОЛА-А | 2003 |
|
RU2330835C2 |
СПОСОБ ПОЛУЧЕНИЯ БИСФЕНОЛА-А | 1994 |
|
RU2119906C1 |
СПОСОБ ПРЕОБРАЗОВАНИЯ ПОБОЧНЫХ ПРОДУКТОВ В ПРОЦЕССЕ СИНТЕЗА БИСФЕНОЛА A | 2013 |
|
RU2620086C2 |
Настоящее изобретение относится к способу получения бисфенола А (БФА), исходного материала для получения пластиков, в частности поликарбонатов. Способ заключается в каталитической конденсации фенола и ацетона в присутствии промотированных сульфированных ионообменных смол с использованием фракционированной кристаллизации для выделения п,п′-БФА-изомера, в способе реакция конденсации ацетона и фенола проводится в многостадийной реакционной системе с межстадийным регулированием температуры реакции и концентрации ацетона и с регулированием концентрации воды перед последней стадией реакционной системы путем рециклирования части посткристаллизационных растворов от кристаллизации из растворителя в поток, направляемый в последний реактор, непрерывного дозирования в реакторную систему, содержащую катализатор, реакционной смеси, содержащей ацетон, воду и фенол, и на следующей стадии вода, ацетон и часть фенола выпариваются из реакционной смеси, которая смешивается с раствором, выходящим с фракционированной кристаллизации, растворенным в изомеризате, обогащенный о,п-изомером-бисфенола А, получаемом в способе изомеризации части потока концентрированных растворов после кристаллизации из растворителя. При этом изомеризация выполняется с использованием макропористой сульфированной ионообменной смолы в водородной форме с диаметром пор не менее 20 нм в качестве катализатора, затем получаемый поток фенола подвергается кристаллизации из растворителя, с получением аддукта бисфенола А и фенола и посткристаллизационных растворов, затем растворы разделяют на две части: поток, рециркулируемый на последнюю стадию реакционной системы, и поток, направляемый на концентрирование путем дистилляции, затем одну часть концентрированных посткристаллизационных растворов подвергают изомеризации и оставшуюся часть концентрированных посткристаллизационных растворов ректифицируют с одновременным разложением содержащихся в потоке производных фенола, тогда как аддукт бисфенола А и фенола подвергается термическому разложению с получением смеси изомеров бисфенола А, фенола и побочных продуктов, где содержание изомера п,п′-бисфенола А составляет не менее 90 сг/г, смесь направляется на фракционированную кристаллизацию, на которой получается чистый бисфенол А, тогда как фенол, извлеченный из технологических потоков в способе концентрирования путем дистилляции реакционной смеси, из концентрированной части потока посткристаллизационных растворов и из термического разложения аддукта бисфенол А/фенол и от ректификации с одновременным разложением фенольных производных, включенных в часть потока концентрированных посткристаллизационных растворов, рециклируется в многостадийную реакционную систему. Способ позволяет получить целевой продукт прозрачного и стабильного цвета в жидком состоянии с хорошей селективностью и эффективностью. 10 з.п. ф-лы, 8 табл., 1 пр.
1. Способ получения бисфенола А (БФА) из фенола и ацетона путем каталитической конденсации в присутствии промотированных сульфированных ионообменных смол с использованием фракционированной кристаллизации для выделения п,п′-БФА-изомера, в котором реакция конденсации ацетона и фенола проводится в многостадийной реакционной системе с межстадийным регулированием температуры реакции и концентрации ацетона и с регулированием концентрации воды перед последней стадией реакционной системы путем рециклирования части посткристаллизационных растворов от кристаллизации из растворителя в поток, направляемый в последний реактор, непрерывного дозирования в реакторную систему, содержащую катализатор, реакционной смеси, содержащей ацетон, воду и фенол, и на следующей стадии вода, ацетон и часть фенола выпариваются из реакционной смеси, которая смешивается с раствором, выходящим с фракционированной кристаллизации, растворенным в изомеризате, обогащенный о,п-изомером-бисфенола А, получаемом в способе изомеризации части потока концентрированных растворов после кристаллизации из растворителя, причем изомеризация выполняется с использованием макропористой сульфированной ионообменной смолы в водородной форме с диаметром пор не менее 20 нм в качестве катализатора, и получаемый поток фенола подвергается кристаллизации из растворителя с получением аддукта бисфенола А и фенола и посткристаллизационных растворов, и затем растворы разделяют на две части: поток, рециркулируемый на последнюю стадию реакционной системы, и поток, направляемый на концентрирование путем дистилляции, и затем одну часть концентрированных посткристаллизационных растворов подвергают изомеризации и оставшуюся часть концентрированных посткристаллизационных растворов ректифицируют с одновременным разложением содержащихся в потоке производных фенола, тогда как аддукт бисфенола А и фенола подвергается термическому разложению с получением смеси изомеров бисфенола А, фенола и побочных продуктов, где содержание изомера п,п′-бисфенола А составляет не менее 90 сг/г, смесь направляется на фракционированную кристаллизацию, на которой получается чистый бисфенол А, тогда как фенол, извлеченный из технологических потоков в способе концентрирования путем дистилляции реакционной смеси, из концентрированной части потока посткристаллизационных растворов и из термического разложения аддукта бисфенол А/фенол и от ректификации с одновременным разложением фенольных производных, включенных в часть потока концентрированных посткристаллизационных растворов, рециклируется в многостадийную реакционную систему.
2. Способ получения бисфенола А по п.1, в котором реакционная смесь, содержащая ацетон, фенол и продукты их конденсации, контактирует с катализатором в 2-5-стадийной реакционной системе при температуре 323-348 К, причем параметры способа выбраны так, что на выходе с реакционной стадии 1 мольное соотношение изомеров о,п′-БФА:п,п′-БФА составляет не более 5:1,00, а на входе последней реакционной стадии мольное соотношение изомеров о,п′-БФА:п,п′-БФА составляет не менее 7:100.
3. Способ получения бисфенола А по п.1, в котором пропорции потоков, загружаемых в многостадийную реакционную систему, выбраны так, что мольное отношение воды к ацетону в реакционной смеси, содержащей фенол, ацетон, воду, изомеры БФА и побочные продукты, и контактирующей с катализатором при температуре 323-348 К, составляет не более 0,5 на входе реакционной стадии 1 и не более 1,2 на последней реакционной стадии многостадийной реакционной системы.
4. Способ получения бисфенола А по п.1, в котором смесь дистиллированных фенолов, извлеченных из технологических потоков как результат концентрирования постреакционной смеси из многостадийной реакционной системы и из концентрированных посткристаллизационных растворов, а также из термического разложения аддукта бисфенол А/фенол и от ректификации с одновременным каталитическим разложением фенольных производных, вводится в свежий фенол и направляется на стадию 1 многостадийной реакционной системы.
5. Способ получения бисфенола А по п.1, в котором часть потока посткристаллизационных растворов от кристаллизации аддукта БФА/фенол, рециклированного в многостадийную реакционную систему, смешивается на входе на последнюю реакционную стадию с постреакционной смесью с предпоследней реакционной стадии в пропорции от 1:1 до 3:1.
6. Способ получения бисфенола А по п.1, в котором посткристаллизационные растворы от кристаллизации аддукта БФА/фенол делятся на два потока, причем больший поток, содержащий не более 95 сг/г выходящего потока растворов, направляется на последнюю стадию многостадийной реакционной системы, тогда как второй поток подвергается концентрированию путем отгонки части фенола, так что массовая фракция бисфенола А в данном потоке составляет не менее 12 сг/г.
7. Способ получения бисфенола А по п.1, в котором концентрирование постреакционной смеси из многостадийной реакционной системы выполняется так, что содержание воды в посткристаллизационных растворах от кристаллизации аддукта БФА/фенол составляет не более 0,4 сг/г.
8. Способ получения бисфенола А по п.1, в котором кристаллизация аддукта выполняется так, что содержание п,п′-БФА-изомера в фильтрате составляет не более 12 сг/г, и соотношение п,п′-БФА и о,п′-БФА изомеров составляет не менее 10:100.
9. Способ получения бисфенола А по п.1, в котором ректификация с одновременным разложением фенольных производных части потока концентрированных посткристаллизационных растворов выполняется в присутствии сильных неорганических оснований KOH или NaOH при температуре, по меньшей мере, 443 К при пониженном давлении не выше 200 гПа, и параметры ректификации выбраны так, что фенол, полученный в данном способе и рециклированный в многостадийную реакционную систему, содержит не более 0,5 сг/г изопропенилфенола ((ИПФ)(IPP)).
10. Способ получения бисфенола А по п.1, в котором не более 85 сг/сг потока концентрированных посткристаллизационных растворов изомеризуется в присутствии макропористого сульфированного ионообменного катализатора при температуре 328-353 К с часовой объемной скоростью жидкости 0,2-5 м3/(м3×ч), поэтому способ изомеризации осуществляется так, что возрастание общего количества побочных продуктов как результат изомеризации составляет не более 0,2 сг/г.
11. Способ получения бисфенола А по п.1, в котором выходящий поток от фракционированной кристаллизации, обогащенный о,п′-БФА-изомером, растворяется в изомеризате при температуре не ниже 353 К в пропорции от 1:5 до 1:20.
Автоматический огнетушитель | 0 |
|
SU92A1 |
ЕР 1669339 А1, 14.06.2006 | |||
Способ приготовления мыла | 1923 |
|
SU2004A1 |
US 3049569 A, 14.08.1962 | |||
Топка с несколькими решетками для твердого топлива | 1918 |
|
SU8A1 |
WO 00/35847 A1, 22.06.2000 | |||
US 4308404 A, 29.12.1981 | |||
GB 1578952 A, 12.11.1980 | |||
СПОСОБ ИССЛЕДОВАНИЯ ПОГЛОЩАЮЩИХ ПЛАСТОВ | 0 |
|
SU332203A1 |
US 4590303 A, 20.05.1986 | |||
Устройство для обезжиривания костиВ пРОизВОдСТВЕ жЕлАТиНА | 1979 |
|
SU812815A1 |
Способ выделения дифенилпро-пАНА" | 1978 |
|
SU798085A1 |
Авторы
Даты
2012-05-27—Публикация
2008-02-14—Подача