Изобретение относится к области высокотемпературной электрохимии и может быть использовано преимущественно для получения катализаторов окислительно-восстановительных процессов на основе ориентированных наноигольчатых структур оксидных вольфрамовых бронз, а также для изготовления ион-селективных элементов, электрохромных устройств, холодных катодов.
Электрохимический способ получения материала - игольчатых оксидных вольфрамовых бронз - известен. (а.с. СССР №1420079, опубл. 30.08.88, бюл. №32). В известном способе электролиз ведут в поливольфраматном расплаве при температуре 700°С и плотности тока на платиновом катоде 0.5 А/см2. Способ позволяет получать игольчатые структуры с размером игл 500-3000 мкм, кристаллы в виде кубов размером 1000-5000 мкм, а также мелкокристаллический порошкообразный осадок с размером зерна ≤10 мкм или ветвистые дендриты размером ≤100 мкм.
Известен способ получения игольчатых наноструктур оксидных вольфрамовых бронз (патент РФ №2354753, опубл. 10.05.2009, бюл. №13), согласно которому электролиз ведут с использованием платиновых анода и катода в импульсном потенциостатическом режиме при перенапряжении 170-300 мВ в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3. В данном способе в качестве анода использовалась платиновая проволока, а в качестве электрода сравнения - платиновая фольга площадью 1 см2, полупогруженная в расплав. В этом случае осаждение кристаллов происходило на плоских торцах катодов из платиновой проволоки, диаметр которой составлял лишь доли миллиметра. Это не позволило провести массовую наработку наноигольчатых вольфрамовых бронз с целью использования их в качестве катализаторов. Попытки масштабировать процесс путем осаждения нанокристаллических осадков на платиновой фольге показали, что на ней формируется пленка нанометровой толщины, которую невозможно отделить от подложки. Это связано с влиянием структуры подложки (платиновая фольга имела текстуру (110)). Невозможность отделить полученный наноматериал от подложки является существенным препятствием для реализуемости изобретения в промышленном производстве.
Настоящее изобретение направлено на устранение этого недостатка. Для решения поставленной задачи заявленный способ включает электролиз в импульсном потенциостатическом режиме при перенапряжении 170-300 мВ в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3, с использованием платинового анода, при этом процесс электроосаждения ведут на вольфрамовом катоде.
Благодаря структуре вольфрамового катода в заявленном электрохимическом способе получения катализатора в процессе электроосаждения образуется поликристаллический осадок наноигольчатого материала, который легко отделяется от подложки. Это свидетельствует в пользу технологичности способа и возможности его промышленного использования. Полученный материал имеет большую площадь рабочей поверхности, притом что он устойчив к агломерации.
Устойчивость к агломерации - важнейшее свойство пригодности материала для промышленного использования, так как она исключает при использовании потерю свойств, присущих наноразмерным материалам. Кроме того, полученный материал легко отмывается от электролита, при этом способ получения этого материала безопасен для окружающей среды, поскольку наноиглы не уходят вместе с промывной водой.
Новый технический результат, достигаемый заявленным способом, заключается в повышении его технологичности и пригодности к массовой наработке наноигольчатого катализатора окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз.
Катализаторы получали электролизом расплава, содержащего 30 мол.% K2WO4 25 мол.% Li2WO4, и 45 мол.% WO3, с использованием платинового анода. На ячейку подавали импульс перенапряжения величиной 170-300 мВ, при этом на вольфрамовом катоде формировался поликристаллический осадок. Для исследования полученных образцов провели рентгеноструктурный анализ, а также анализ дисперсности на установке "RIGAKU" DNAX 2200PC. Морфологию осадков определяли с помощью электронного микроскопа JSM-5900 LV, а удельную поверхность - методом БЭТ на приборе СОРБИ 4.1.
Исследования показали, что полученный материал представляет собой порошок бронзы гексагональной структуры, состоящий из микрокристаллов, где каждый микрокристалл - ориентированная наноигольчатая структура. Все иглы имеют одну ориентацию и вытянуты в направлении <0001>. Толщина игл составляет порядка 30-100 нм. Удельная поверхность наработанного порошка, полученного при перенапряжении 200 мВ, составляет 0.92 м2/г. При этом экспериментальные данные о зависимости толщины и количества наноигл от электрохимических параметров позволяют предположить возможность управления процессом электролиза.
Поскольку оксидные вольфрамовые бронзы в качестве катализаторов используются в различных процессах органического и нефтехимического синтеза, и, в том числе, при перекисном окислении органических соединений, полученные нанокристаллические образцы исследовали на каталазную активность, которую определяли по степени превращения гидропероксида водорода в течение 30 минут при температуре 50°С.
Для сравнения по данной методике исследовали каталазную активность оксидных вольфрамовых бронз и других структур, которые тоже могут быть использованы в качестве катализаторов. Эти бронзы были также получены электролизом расплавов, но не являлись нанокристаллическими. Было показано, что каталазная активность образцов, полученных заявленным способом, в 5 и 10 раз выше, чем у порошков бронз кубической и тетрагональной структур соответственно.
Таким образом, заявленный способ является более технологичным и может быть использован для производственного получения нанокристаллического катализатора окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз с высокой каталазной активностью.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ НА УГОЛЬНОМ МАТЕРИАЛЕ | 2013 |
|
RU2525543C1 |
Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты) | 2019 |
|
RU2706006C1 |
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ ГИБРИДНЫХ КАТАЛИТИЧЕСКИХ СИСТЕМ НА ОСНОВЕ МОДИФИЦИРОВАННОГО УГЛЕРОДА, СОДЕРЖАЩИХ НА ПОВЕРХНОСТИ ОКСИДНЫЕ ВОЛЬФРАМОВЫЕ БРОНЗЫ | 2015 |
|
RU2579119C1 |
СПОСОБ ПОЛУЧЕНИЯ ИГОЛЬЧАТЫХ ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ | 2007 |
|
RU2354753C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ ПОКРЫТИЙ ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ | 2009 |
|
RU2426822C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОВИСКЕРНЫХ СТРУКТУР ОКСИДА МЕДИ | 2011 |
|
RU2464224C1 |
Электрохимический способ получения нановискеров оксида меди | 2019 |
|
RU2747920C1 |
Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава | 2018 |
|
RU2692543C1 |
Электрохимический способ обработки монокристаллических кремниевых пластин для солнечных батарей | 2020 |
|
RU2749534C1 |
СПОСОБ ПОЛУЧЕНИЯ МЕДЬСОДЕРЖАЩЕГО МАТЕРИАЛА В ВИДЕ МЕТАЛЛИЧЕСКОЙ ПОДЛОЖКИ С НАНЕСЕННЫМИ НА НЕЕ МИКРОЧАСТИЦАМИ МЕДИ | 2014 |
|
RU2574629C1 |
Изобретение относится к способам получения катализаторов. Описан способ получения наноигольчатых катализаторов окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз, включающий электролиз в импульсном потенциостатическом режиме при перенапряжении 170-300 мВ в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3, с использованием платинового анода, притом что процесс электроосаждения ведут на вольфрамовом катоде. Технический результат - повышение технологичности способа и пригодности к массовой наработке наноигольчатого катализатора окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз.
Способ получения наноигольчатых катализаторов окислительно-восстановительных процессов на основе оксидных вольфрамовых бронз, включающий электролиз в импульсном потенциостатическом режиме при перенапряжении 170-300 мВ в расплаве, содержащем 30 мол.% K2WO4, 25 мол.% Li2WO4 и 45 мол.% WO3 с использованием платинового анода, при том, что процесс электроосаждения ведут на вольфрамовом катоде.
СПОСОБ ПОЛУЧЕНИЯ ИГОЛЬЧАТЫХ ОКСИДНЫХ ВОЛЬФРАМОВЫХ БРОНЗ | 2007 |
|
RU2354753C2 |
Способ получения оксидных вольфрамовых бронз | 1984 |
|
SU1298259A1 |
Способ покрытия тел вольфрамом посредством электролиза расплавленных солей | 1924 |
|
SU3568A1 |
Способ управления электроприводом поворота экскаватора | 1979 |
|
SU899805A1 |
Устройство внутреннего крепления зеркала | 1985 |
|
SU1275351A1 |
Устройство для управления работой @ -секционного электрофильтра | 1987 |
|
SU1452593A1 |
Авторы
Даты
2012-07-20—Публикация
2010-11-02—Подача