СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ ХАЛЬКОГЕНИДНЫХ НАНОЧАСТИЦ Российский патент 2012 года по МПК H01L21/20 B82B3/00 

Описание патента на изобретение RU2459311C2

Изобретение относится к получению полупроводниковых наноматериалов. Такие материалы применяются в электронике для создания оптических фильтров, в химии для разложения воды под действием света, в медицине в виде «квантовых точек» для диагностики онкологических заболеваний. Химические формулы халькогенов АIIBIV, где АII - металл подгруппа цинка (Zn, Cd, Hg), ВIV - халькоген (S, Se, Te). Наночастицы этих полупроводников, соизмеримые с длиной волны Де-Бройля, называют квантовыми точками из-за особых квантово-размерных эффектов.

Известно получение халькогенидных наночастиц путем обменной реакции в системе обратных мицелл (Робинсон и др. Синтез и выделение икрочастиц в системе обратных мицелл. В сборнике «Структура и реактивность в обратных мицеллах», под ред. Пилени, Токио, 1989, с.198). Получаемые данным способом наночастицы имеют непродолжительное время существования в углеводородных растворителях. Для стабилизации дисперсных систем в реакционную смесь добавляют лиганды, ПАВ, тиолы (Губин С.П., Катаева Н.А., Хомутов Г.В. // Изв. АН. Сер. хим. 2005. №4. С.811).

Наиболее близким к предлагаемому способом по техническому решению является синтез халькогенидных наночастиц в системе гидразингидрат-щелочь (Патент РФ 2366541 (13) С2, B22F 9/24 (2006.01), Леванова Е.П. и др. Полифункциональные материалы и нанотехнологии. Сборник статей /под ред. Г.Е. Дунаевского и др. -Томск, 2008. Том 1. - С.262).

Известный способ получения халькогенидных наночастиц состоит из реакции соли металла (МеХ2, где Me - Zn2+, Cd2+, Hg2+, a X - Сl-, Br-, NO3-, СН3СОО-) c элементным халькогеном (S, Se, Те) и одновременно органическим дихалькогенидом R2Y (Y- S, Se, Те; R - органический радикал) в системе гидразингидрат - щелочь. В этой системе наблюдается восстановительная активация халькогена и дихалькогенида, например диалкилдисульфида R-S-S-R

Полученные гомогенные растворы объединяют и добавляют к водному раствору соли МеХ2

R=СН3, С2Н5, НОСН2СН2-, n-C8H17 и др. n=10-30, m=8-24.

В результате образуются частицы следующего строения MenYm(YR)6 размером от 5 до 30 нм. На поверхности наночастиц находятся органические радикалы.

Недостаток способа - использование дурнопахнущих органических дихалькогенидов, что удорожает способ получения в связи с ужесточением охраны труда, малой скорости реакции (2) вследствие плохой растворимости дихалькогенидов в воде.

Технической задачей изобретения является расширение ассортимента исходных реагентов, замена дурнопахнущих дихалькогенидов. Кроме того, при использовании предлагаемых реагентов сохраняется лучшая стабилизация дисперсной системы.

Указанная выше задача решается тем, что в известном способе получения полупроводниковых халькогенидных наночастиц из соли металла подгруппы цинка, элементного халькогена, органического дихалькогенида в системе гидразингидрат-щелочь вместо органических дихалькогенов используют s-алкилизотиурониевые соли RSC(NH2)2Cl (AT-соли). АТ-соли получают из соответствующих алкилгалогенидов и тиомочевины (селеномочевины) при кипячении в среде этилового спирта. Соли представляют собой белые кристаллические вещества, без запаха. С алкильным радикалом до С10 они хорошо растворяются в воде.

Дихалькогениды, например низкомолекулярный диметилдисульфид, в воде растворяются плохо. Такое свойство дихалькогенидов уменьшает скорость реакции (2). Предлагаемый способ осуществляют следующим образом. В системе гидразингидрат - щелочь наблюдается восстановительная активация халькогенида (серы) и АТ-соли

Количество добавляемой АТ-соли подбирается экспериментальным путем в зависимости от ее связывания на поверхности полупроводникового халькогенида. Максимум соответствует плотному мономолекулярному слою. Поверхность наночастицы определяют по ее диаметру. Например, наночастица с диаметром 3 нм имеет поверхность 9,42·10-14 см2. По площади всех частиц и площади, занимаемой АТ-солью, можно рассчитать требуемое количество AT в реакции (5).

Полученные гомогенные растворы объединяют и добавляют к водному раствору соли металлов подгруппы цинка.

Реакция (5) происходит быстрее, чем реакция (2), так как RSC(NH2)+Cl-, например, s-бензилизотиуроний хлорид (БТХ) хорошо растворяется в воде и все реагенты реакции (5) образуют гомогенную систему. (CdS)n(SR)m представляет собой наночастицу из n молекул CdS, которая окружена связанными посредством связи S-C m бензильными радикалами. Благодаря гидрофобизации поверхности наночастицы выпадают в осадок из гомогенной водной среды после реакции (6). Порошок отделяют от водного слоя с помощью центрифуги, промывают водой. Определяют размер наночастиц на просвечивающем электронном микроскопе. Наличие стабилизирующей органической фазы подтверждают методом спектроскопии комбинационного рассеивания.

В способе получения полупроводниковых халькогенидных наночастиц могут использоваться s-алкиларилизотиурониевые соли, а также соли с ионами хлора, брома, йода.

Предлагаемый способ иллюстрируется примером. В 50 мл стеклянный стакан с магнитной мешалкой загружают 4 мл 2М раствора КОН, 4 мл 0,5М раствора N2H4·H2O и 0,13 г порошка серы. Смесь перемешивают до окончания реакции (1), что определяют по исчезновению частичек серы и прекращению выделения пузырьков азота (реакция (2)). В другой 50 мл стеклянный стакан с магнитной мешалкой загружают 4 мл 2М раствора КОН, 4 мл 0,5М раствора N2H4·H2O и 0,4 г кристаллического БТХ. Раствор перемешивают до прекращения выделения пузырьков газа реакции (5). В третьем 50 мл стакане растворяют 0,36 г CdCl2 в 6 мл H2O. Предварительно сливают друг с другом водные растворы первого и второго стаканов и добавляют полученную смесь к раствору CdCl2 третьего раствора. Перемешивают. В зависимости от чистоты серы, БТХ, CdCl2 образуются разные по цвету флуоресцирующие растворы. Получают наночастицы сульфида кадмия, покрытые бензильными радикалами. Для выделения наночастиц к водному раствору добавляют 10 мл изооктана и перемешивают до перехода наночастиц в углеводородный растворитель. Далее каплю углеводородной дисперсии переносят на углеродную подложку с медной сеточкой и определяют размер наночастиц в просвечивающем электронном микроскопе 5,6±0,4 нм.

Таким образом, с помощью изобретения решается задача расширения ассортимента восстановительного активатора, улучшение их растворимости, а значит увеличение скорости реакции (5) по сравнению с реакцией (2) при получении полупроводниковых наночастиц халькогенидов металлов подгруппы цинка.

Похожие патенты RU2459311C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ ХАЛЬКОГЕНИДНЫХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ 2007
  • Хоменко Андрей Павлович
  • Руссавская Наталья Владимировна
  • Вшивцев Валерий Юрьевич
  • Грабельных Валентина Александровна
  • Леванова Екатерина Петровна
  • Сухомазова Эмма Наумовна
  • Земирова Ирина Александровна
  • Гендин Дмитрий Васильевич
  • Гозбенко Валерий Ерофеевич
  • Корчевин Николай Алексеевич
RU2366541C2
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ ХАЛЬКОГЕНИДОВ МЕТАЛЛОВ 2010
  • Леванова Екатерина Петровна
  • Грабельных Валентина Александровна
  • Розенцвейг Игорь Борисович
  • Руссавская Наталья Владимировна
  • Трофимова Ирина Николаевна
  • Смирнов Владимир Ильич
  • Мячина Галина Фирсовна
  • Корчевин Николай Алексеевич
RU2417863C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ НАНОЧАСТИЦ 2012
  • Антипов Александр Анатольевич
  • Кутровская Стелла Владимировна
  • Кучерик Алексей Олегович
  • Осипов Антон Владиславович
RU2517781C2
СПОСОБ СИНТЕЗА ПОЛУПРОВОДНИКОВЫХ КВАНТОВЫХ ТОЧЕК 2008
  • Новичков Роман Владимирович
  • Вакштейн Максим Сергеевич
  • Нодова Екатерина Леонидовна
  • Маняшин Алексей Олегович
  • Тараскина Ирина Ивановна
RU2381304C1
Способ синтеза наночастиц полупроводников 2015
  • Журавлев Олег Евгеньевич
  • Пресняков Илья Андреевич
RU2607405C2
Способ получения коллоидных квантовых точек для применения в медицинской диагностике 2022
  • Попова Анна Анатольевна
  • Андреев Евгений Валерьевич
  • Рудных Сергей Константинович
  • Новикова Сагила Аладдиновна
  • Грибова Елена Дмитриевна
  • Гладышев Павел Павлович
  • Сергеев Сергей Николаевич
  • Сидоров Евгений Александрович
RU2809097C1
ПРОТИВОМИКРОБНЫЙ МАТЕРИАЛ 2022
  • Новиков Андрей Александрович
  • Сайфутдинова Аделия Ринатовна
  • Ставицкая Анна Вячеславовна
  • Сеглюк Виктория Сергеевна
  • Шахбазова Христина Янисовна
  • Петрова Дарья Андреевна
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Винокуров Владимир Арнольдович
RU2807106C1
СПОСОБ ПОЛУЧЕНИЯ СВЕТОПОГЛОЩАЮЩЕГО СЛОЯ ТОНКОПЛЕНОЧНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ ИЗ МЕДИ-ИНДИЯ-ГАЛЛИЯ-СЕРЫ-СЕЛЕНА 2008
  • Хуанг Фукианг
  • Ванг Яоминг
RU2446510C1
СПОСОБ ХАЛЬКОГЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ АРСЕНИДА ГАЛЛИЯ n-ТИПА 2005
  • Фомина Лариса Валерьевна
  • Безносюк Сергей Александрович
RU2291517C1
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ МАТЕРИАЛОВ 2013
  • Федоров Владимир Ефимович
  • Артемкина Софья Борисовна
  • Наумов Николай Геннадьевич
  • Миронов Юрий Владимирович
  • Медведев Максим Викторович
RU2552451C2

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ ХАЛЬКОГЕНИДНЫХ НАНОЧАСТИЦ

Изобретение относится к получению полупроводниковых наноматериалов. Сущность изобретения: в способе получения полупроводниковых халькогенидных наночастиц из соли металла подгруппы цинка, элементного халькогена и органического восстановительного активатора, в качестве органического активатора используют s-алкилизотиурониевые соли. Изобретение обеспечивает расширение ассортимента исходных реагентов, устраняет использование дурнопахнущих реагентов, обеспечивает стабилизацию дисперсной системы. 2 з.п. ф-лы.

Формула изобретения RU 2 459 311 C2

1. Способ получения полупроводниковых халькогенидных наночастиц из соли металлов подгруппы цинка, элементного халькогена и органического восстановительного активатора, отличающийся тем, что в качестве активаторов используют s-алкилизотиурониевые соли.

2. Способ по п.1, отличающийся тем, что используют s-алкиларилизотиурониевые соли.

3. Способ по п.1, отличающийся тем, что используют соли с ионами хлора, брома, йода.

Документы, цитированные в отчете о поиске Патент 2012 года RU2459311C2

СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ ХАЛЬКОГЕНИДНЫХ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ 2007
  • Хоменко Андрей Павлович
  • Руссавская Наталья Владимировна
  • Вшивцев Валерий Юрьевич
  • Грабельных Валентина Александровна
  • Леванова Екатерина Петровна
  • Сухомазова Эмма Наумовна
  • Земирова Ирина Александровна
  • Гендин Дмитрий Васильевич
  • Гозбенко Валерий Ерофеевич
  • Корчевин Николай Алексеевич
RU2366541C2
US 7563430 B2, 21.07.2009
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Прибор, замыкающий сигнальную цепь при повышении температуры 1918
  • Давыдов Р.И.
SU99A1
KR 20090108826 A, 19.10.2009.

RU 2 459 311 C2

Авторы

Миргород Юрий Александрович

Емельянов Сергей Геннадьевич

Даты

2012-08-20Публикация

2010-11-03Подача