ЛЕТУЧИЙ ИНГИБИТОР СЕРОВОДОРОДНОЙ КОРРОЗИИ СТАЛИ Российский патент 2012 года по МПК C23F11/02 

Описание патента на изобретение RU2460828C1

Изобретение относится к технологии защиты стального оборудования и трубопроводов от сероводородной коррозии с помощью летучих ингибиторов коррозии (ЛИК).

Аналогами предлагаемого ингибитора являются индивидуальные амины, продукты их гетероалкилирования, основания Шиффа, пиридин и его производные, однако, по ряду причин, они не нашли широкого применения /1-4/.

При этом большинство прототипов исследовалось при их непосредственном нанесении на стальную поверхность, что не относит разрабатываемые составы к классу ЛИК /5/.

Задачей настоящего изобретения является разработка высокоэффективного летучего ингибитора сероводородной коррозии стали, обеспечивающего длительную защиту при различных условиях эксплуатации защищаемого оборудования, в том числе и в условиях значительного содержания сероводорода в газе (до 15 об.%).

Поставленная задача достигается тем, что ингибитор, содержащий алифатический амин, дополнительно содержит третичный амин (ТА) и регулятор кислотности при следующем соотношении компонентов (мас.%):

Алифатический амин 25-90 Третичный амин (ТА) 10-75 Регулятор кислотности 0,1-60

Ниже приводится подробное описание изобретения, поясняющее его техническую сущность, а также примеры конкретных составов предлагаемого ингибитора.

Индивидуальные амины известны как ингибиторы H2S-коррозии стали, однако они обладают либо малой гидрофобностью при высокой летучести, либо, наоборот, большой гидрофобностью при низкой летучести. При этом и те, и другие представители аминов оказывают незначительный ингибирующий эффект на H2S-коррозию стали в газовой фазе.

При правильном подборе различных аминов и их совместном введении в коррозионную среду нами впервые было обнаружено значительное повышение эффективности защиты, свидетельствующее о существенном взаимном усилении действия всех компонентов. Для объяснения обнаруженного неаддитивного возрастания эффективности ингибирования при совместном введении в коррозионную среду указанных выше веществ требуется проведение фундаментальных общенаучных исследований и в настоящее время не представляется возможным описать природу обнаруженного явления.

Защитное действие ЛИК оценивали в газовой фазе над средой, моделирующей пластовую воду газового месторождения, которую предварительно насыщали H2S. Исследования проводили в отношении образцов стали 08пс. Ячейка для испытаний представляла собой сосуд объемом 2 л, который на 1/3 заполняли модельной средой. Ингибитор вводили непосредственно в жидкую фазу в концентрации 1 г/л аминов. Образцы подвешивали на нейлоновой нити так, чтобы они полностью располагались в газовой фазе. Ячейку плотно закрывали крышкой с ниппельным клапаном, после чего в сосуд подавали азот до 1 избыточной атмосферы /6/. Перед испытаниями плоские стальные образцы зачищали наждачной бумагой различной зернистости. Продолжительность опытов составляла 10 суток. Об эффективности защиты судили по скорости коррозии, которые рассчитывали по формуле:

K=Δm/(S*t), где Δm - потеря массы образца, S - площадь образца, t - продолжительность испытаний.

Ингибитор готовили посредствам смешения различных аминов, алифатического спирта и регулятора кислотности в весовых соотношениях, указанных в таблицах 1-6.

Таблица 1 Скорость коррозии K (г/м2·ч) стали 08пс при введении в среду индивидуального амина (аналоги) Ингибитор К, г/м2·ч без ингибитора 0,46 - ЭА - 0,44 ПА - 0,39 н-БА - 0,33 АА - 0,38 ДЭА - 0,40 ДПА - 0,37 ДБА - 0,38 ДАА - 0,21 изоБА - 0,45 в-БА - 0,40 изоАА - 0,32 в-ПА - 0,33 ДИБА - 0,40 ДВБА - 0,42 ДИАА - 0,40 ТЭА - 0,31 ТПА - 0,33 ТИПА - 0,36 ТБА - 0,40 ТИБА - 0,41 ТВБА - 0,45 ТАА - 0,42 ТИАА - 0,45 ДМА - 0,45 ДМБА - 0,41

Таблица 5 Скорость коррозии К(г/м2·ч стали 08 пс при введении в среду ингибитора состава: смесь третичных аминов+алифатический амин Смеси Соотношение масс аминов (масс.%) 1:1:1 2:1:1 1:2:1 1:1:2 ДЭА+ТИАА+ДМА 0,06 0,03 0,02 0,11 ДПА+ТАА+ДМБА 0,01 0,05 0,03 0,11 ДБА+ТПА+ТЭА 0,09 0,04 0,12 0,16 ДАА+ТБА+ДМБА 0,15 0,05 0,17 0,09 изоАА+ТПА+ДМА 0,09 0,03 0,02 0,05 ДИАА+ТИБА+ТЭА 0,12 0,04 0,02 0,12

Таблица 7 Скорости коррозии К (г/м2·ч) стали 08пс при введении в среду ингибитора-аналога и ингибитора-прототипа Ингибитор К (г/м2·ч) Без ингибитора 0,46 Предлагаемый состав 0,17-0,01 Аналоги 0,45-0,21 Прототипы 0,32-0,15

Список сокращений в таблицах 1-7

ЭА этиламин ПА пропиламин н-БА н-бутиламин АА амиламин ДЭА диэтиламин ДПА дипропиламин ДБА дибутиламин ДАА диамиламин изоБА изобутиламин в-БА втор-бутиламин изоАА изоамиламин в-ПА втор-пентиламин ДИБА диизобутиламин ДВБА ди-втор-бутиламин ДИАА диизоамиламин ТЭА триэтиламин ТПА трипропиламин ТИПА триизопропиламин ТБА три-н-бутиламин ТИБА триизобутиламин ТВБА три-втор-бутиламин ТАА триамиламин ТИАА триизоамиламин ДМА N,N-диметиланилин ДМБА диметилбензиламин УК уксусная кислота ПК пропионовая кислота ВК валериановая кислота БК бензойная кислота

В таблице 1 приведены результаты испытаний индивидуальных аминов (аналоги). По приведенным данным можно оценить защитный эффект по формуле: Z=(К0ин)/К0, где К0 - скорость коррозии в фоновой среде, Кин - скорость коррозии в присутствии ингибитора. Соответственно, для индивидуальных аминов Z колеблется от 2 до 54%.

В таблицах 2-4 представлены скорости коррозии в присутствии двойных смесей аминов (алифатический амин+третичный амин). Z для смесей с соотношением 90:10 находится в пределах 37÷98% (таблица 2), для соотношения 50:50 в пределах 28÷98% (таблица 3), для соотношения 10:90 - 4÷96%. Таким образом, взаимное усиление защитных свойств в большей мере характерно для смесей с большим содержанием алифатического амина. При снижении содержания алифатического амина значительно снижается защита некоторыми композициями, а также снижается общее число высокоэффективных смесей.

В таблице 5 приведены результаты для некоторых тройных смесей состава: алифатический амин + смесь третичных аминов - которые также иллюстрируют найденную зависимость. Z в случае таких смесей возрастает еще больше и находится в диапазоне 63÷98%.

Данные испытания показали, что смесевые ингибиторные составы эффективнее отдельных компонентов. Таким образом, очевидно проявление неаддитивности защитных свойств различных аминов при их совместном использовании, причем в относительно широком интервале соотношений.

При введении в электролит амины изменяют величину кислотности раствора, которая может влиять на защитные свойства ингибитора. В таблице 6 приведены результаты испытаний смесевых ингибиторов при добавлении различных количеств регуляторов кислотности. Из представленных данных видно, что в некоторых случаях добавление регулятора кислотности увеличивает защитную способность ингибитора, однако в других случаях кислотность ингибированного раствора изначально является наиболее оптимальной и добавление регулятора не требуется.

Индивидуальные амины можно рассматривать как аналог, а ингибиторы на основе пиридиновых оснований, ранее широко используемые на практике, как прототип разработанного ингибитора. Из данных, приведенных в таблице 7, видно, что предлагаемый состав превосходит как ингибитор-аналог, так и ингибитор-прототип по своим защитным свойствам.

Все входящие в состав предлагаемого ингибитора вещества производятся промышленно и не являются дефицитными.

Использование предлагаемого ингибитора позволит существенно увеличить сроки безаварийной работы оборудования и трубопроводов, перекачивающих влажный сероводородсодержащий газ.

Литература

1. Негреев В. Ф. Коррозия оборудования нефтяных промыслов. Баку. Азнефтеиздат - 1951. - 128 с.

2. Брегман Дж. Ингибиторы коррозии. Л.: Химия. - 1966. - 310 с.

3. Вяхирев Р.И., Гафаров Н.А., Митрофанов А.В., Холзаков Н.В., Павловский Б.Р., Нургалиев Д.М., Киченко Б.В. Проблемы коррозии и ингибиторной защиты трубопроводов с сероводородсодержащей продукцией в целях оценки перспективы эксплуатации газопроводов УКПГ-ГПЗ на Оренбургском ГКМ. М.: ИРЦ Газпром. - 1996. - 41 с.

4. Розенфельд И.Л., Фролова Л.В., Брусникина В.М., Легезин Н.Е., Альтшулер Б.Н. // Защита металлов. - 1981. - №1. - С.43-49.

5. Вагапов Р.К., Кашковский Р.В., Кузнецов Ю.И. // Коррозия: материалы, защита. - 2010. - №10. - С.16-24.

6. Кашковский Р.В., Кузнецов Ю.И., Вагапов Р.К. // Коррозия: материалы, защита. - 2010. - №4. - С.13-18.

Похожие патенты RU2460828C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ГЛЛОГЕНПРОИЗВОДНЫХ ФЕНОКСИТРИАЗИНА 1971
  • Иностранец Роджи
  • Объединенна Арабска Республика
  • Иностранна Фирма Динамит Нобель
  • Феде,Ративна Республика Германии
SU311456A1
ЖЕСТКИЕ ПЕНОПОЛИУРЕТАНЫ 1997
  • Зикер Томас Хайнрих
  • Габриэли Франко
  • Вальредт Саския Ракель
RU2189379C2
СМОЛЯНАЯ СМЕСЬ НА ОСНОВЕ ЭПОКСИ(МЕТ)АКРИЛАТНОЙ СМОЛЫ И ЕЕ ПРИМЕНЕНИЕ 2013
  • Гэфке Геральд
  • Бюргель Томас
  • Ляйтнер Михаэль
RU2649437C2
ИНГИБИТОР СЕРОВОДОРОДНОЙ КОРРОЗИИ И НАВОДОРОЖИВАНИЯ 2015
  • Болдырев Анатолий Васильевич
  • Чирков Юрий Алексеевич
  • Иванова Олеся Ивановна
  • Ушаков Алексей Петрович
  • Зарубина Евгения Юрьевна
RU2591923C1
ЛЕТУЧИЙ ИНГИБИТОР АТМОСФЕРНОЙ КОРРОЗИИ 2009
  • Кузнецов Юрий Игоревич
  • Андреев Николай Николаевич
  • Гончарова Ольга Александровна
RU2388847C1
НЕЙТРАЛИЗАТОР СЕРОВОДОРОДА И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ 2008
  • Фахриев Ахматфаиль Магсумович
  • Фахриев Рустем Ахматфаилович
RU2370508C1
СПОСОБ ОЧИСТКИ ЖИДКИХ УГЛЕВОДОРОДНЫХ ФРАКЦИЙ ОТ СЕРОВОДОРОДА И МЕРКАПТАНОВ 1996
  • Фахриев А.М.
  • Фахриев Р.А.
  • Белкина М.М.
RU2107085C1
НЕЙТРАЛИЗАТОР СЕРОВОДОРОДА И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ 2013
  • Фахриев Ахматфаиль Магсумович
  • Фахриев Рустем Ахматфаилович
RU2522459C1
ПРОПИТОЧНЫЙ СОСТАВ 1992
  • Ханукова Э.С.
  • Ваксер Б.Д.
  • Петров В.В.
  • Урванцева Г.М.
  • Соколов Ю.А.
  • Спиридонов В.М.
  • Чибриков А.Н.
  • Ефимова Н.Н.
  • Хазанов А.И.
  • Пьянкова С.Н.
  • Саар Л.И.
RU2010367C1
Способ получения о-сульфаминобензойных кислот 1972
  • Хампрехт Герхард
  • Кениг Карл Хейнц
  • Болц Герхард
SU450401A3

Реферат патента 2012 года ЛЕТУЧИЙ ИНГИБИТОР СЕРОВОДОРОДНОЙ КОРРОЗИИ СТАЛИ

Изобретение относится к области защиты стального оборудования и трубопроводов от сероводородной коррозии. Ингибитор коррозии содержит, мас.%: алифатический амин 25-90; третичный амин 10-75; регулятор кислотности 0,1-60. Технический результат: обеспечение длительной защиты от коррозии защищаемого оборудования при различных условиях эксплуатации, в том числе и в условиях значительного содержания сероводорода в газе - до 15 об.%. 14 з.п. ф-лы, 7 табл.

Формула изобретения RU 2 460 828 C1

1. Летучий ингибитор сероводородной коррозии стали на основе алифатического амина, отличающийся тем, что он дополнительно содержит третичный амин и регулятор кислотности при следующем соотношении компонентов, мас.%:
Алифатический амин 25-90 Третичный амин 10-75 Регулятор кислотности 0,1-60

2. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве алифатического амина содержит этиламин, или его гомолог - пропиламин, или н-бутиламин, или амиламин.

3. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве алифатического амина содержит диэтиламин, или его гомолог - дипропиламин, или дибутиламин, или диамиламин.

4. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве алифатического амина содержит амин изостроения - изобутиламин, или втор-бутиламин, или изоамиламин, или втор-пентиламин, или диизобутиламин, или да-втор-бутиламин, или диизоамиламин.

5. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве третичного амина содержит триэтиламин, или трипропиламин, или триизопропиламин, или три-н-бутиламин, или триизобутиламин, или три-втор-бутиламин, или триамиламин, или триизоамиламин, или N,N-диметиланилин, или диметилбензиламин.

6. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве третичного амина содержит смесь триэтиламина с одним из следующих третичных аминов: трипропиламином, или триизопропиламином, или три-н-бутиламином, или триизобутиламином, или три-втор-бутиламином, или триамиламином, или триизоамиламином, или N,N-диметиланилином, или диметилбензиламином.

7. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве третичного амина содержит смесь трипропиламина с одним из следующих третичных аминов: триизопропиламином, или три-н-бутиламином, или триизобутиламином, или три-втор-бутиламином, или триамиламином, или триизоамиламином, или N,N-диметиланилином, или диметилбензиламином.

8. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве третичного амина содержит смесь триизопропиламина с одним из следующих третичных аминов: три-н-бутиламином, или триизобутиламином, или три-втор-бутиламином, или триамиламином, или триизоамиламином, или N,N-диметиланилином, или диметилбензиламином.

9. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве третичного амина содержит смесь три-н-бутиламина с одним из следующих третичных аминов: триизобутиламином, или три-втор-бутиламином, или триамиламином, или триизоамиламином, или N,N-диметиланилином, или диметилбензиламином.

10. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве третичного амина содержит смесь триизобутиламина с одним из следующих третичных аминов: три-втор-бутиламином, или триамиламином, или триизоамиламином, или N,N-диметиланилином, или диметилбензиламином.

11. Летучий ингибитор коррозии по п.1, отличающийся тем, что в качестве третичного амина содержит смесь три-втор-бутиламина с одним из следующих третичных аминов: триамиламином, или триизоамиламином, или N,N-диметиланилином, или диметилбензиламином.

12. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве третичного амина содержит смесь триамиламина с одним из следующих третичных аминов: триизоамиламином, или N,N-диметиланилином, или диметилбензиламином.

13. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве третичного амина содержит смесь триизоамиламина с одним из следующих третичных аминов: N,N-диметиланилином или диметилбензиламином.

14. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве третичного амина содержит смесь N,N-диметиланилина с диметилбензиламином.

15. Летучий ингибитор коррозии по п.1, отличающийся тем, что он в качестве регулятора кислотности содержит летучую кислоту: соляную или уксусную, или пропионовую, или валериановую, или бензойную или их аналоги.

Документы, цитированные в отчете о поиске Патент 2012 года RU2460828C1

ВАГАПОВ Р.К
и др
Коррозия: материалы, защита
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
СПОСОБ ЗАЩИТЫ ОТ АТМОСФЕРНОЙ КОРРОЗИИ ПРИ ВРЕМЕННОМ ХРАНЕНИИ И ТРАНСПОРТИРОВКЕ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ 2007
  • Захаров Александр Николаевич
RU2391446C2
Способ защиты стали от атмосферной коррозии 1970
  • Саверина Н.А.
  • Дольская Ю.С.
  • Малов Л.В.
  • Кондратьева Г.Я.
SU318315A1
Способ получения D-6- @ -пропил-8 L-метил /меркапто или оксо/ метилэрголина или его солей 1980
  • Эдмунд Карл Корнфельд
  • Николас Джеймс Бэк
SU976851A3

RU 2 460 828 C1

Авторы

Кузнецов Юрий Игоревич

Кашковский Роман Владимирович

Фролова Лариса Викторовна

Вагапов Руслан Кизитович

Даты

2012-09-10Публикация

2011-06-16Подача