СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ Российский патент 2012 года по МПК C21C5/28 

Описание патента на изобретение RU2465337C1

Изобретение относится к черной металлургии, в частности к способам выплавки стали в кислородном конвертере.

Известен способ выплавки стали в кислородном конвертере, включающий продувку металла сверху кислородом через фурму и снизу через донные фурмы нейтральным газом в течение всей плавки, подачу в расплав шлакообразующих добавок и охладителей, определение химического состава металла, слив металла в разливочный ковш и подачу в него раскислителей [патент РФ №2031131, кл. C21C 5/28].

Известный способ предполагает использование усложненной конструкции кислородного конвертера с комбинированной продувкой.

Известен выбранный в качестве прототипа способ выплавки стали в конвертере, включающий подачу в конвертер жидкого чугуна и металлолома, шлакообразующих материалов, продувку металла кислородом сверху через погружную фурму, изменение по ходу продувки положения фурмы над уровнем расплава в спокойном состоянии и расхода кислорода. В шихту дополнительно вводят железосодержащий продукт переработки отвальных шлаков с содержанием железа общего не менее 85% в соотношении к количеству металлолома 2:1, а в составе шлакообразующих материалов дополнительно используют охладители в виде известняка и доломита в количестве, зависящем от расхода чугуна, расхода лома, расхода железосодержащего продукта переработки отвальных шлаков, температуры чугуна, содержания кремния в чугуне, температуры стали [патент РФ №2386703, кл. C21C 5/28].

Существенным недостатком данного способа выплавки стали является повышенное содержание активного кислорода в металле по окончании плавки, что приводит:

- к увеличению угара ферросплавов и раскислителей;

- к высокой загрязненности металла неметаллическими включениями, образующимися при раскислении металла во время выпуска из конвертера.

Задача, решаемая изобретением, состоит в том, чтобы обеспечить снижение содержания активного кислорода в металле после продувки в конвертере.

Желаемым техническим результатам изобретения является снижение расхода ферросплавов, алюминия и легирующих материалов для получения требуемого химического состава готовой стали, а также снижение содержания неметаллических включений, образующихся при раскислении металла во время выпуска из конвертера.

Для этого предлагается способ выплавки стали, включающий подачу в кислородный конвертер жидкого чугуна и металлолома, шлакообразующих материалов, продувку металла кислородом сверху через погружную фурму, изменение по ходу продувки ее интенсивности и положения фурмы над уровнем металла, отличающийся тем, что после завершения продувки металла кислородом производят частичное скачивание шлака, после чего сверху через погружную фурму проводят продувку металла азотом с интенсивностью 1000…1200 м3/мин продолжительностью 1,5…2,0 мин, во время продувки металла азотом обеспечивают положение фурмы 0,4…0,6 м над уровнем металла.

Заявляемые пределы подобраны экспериментальным путем. Частичное скачивание высокоокисленного конвертерного шлака в чашу перед продувкой металла азотом обеспечивает снижение количества попадающего из конвертера шлака в сталеразливочный ковш во время выпуска.

Интенсивность и продолжительность продувки металла азотом подобраны исходя из создания наиболее благоприятных условий для удаления кислорода из металла во время продувки. При снижении интенсивности менее 1000 м3/мин и продолжительности продувки менее 1,5 мин не решается основная задача данного способа - снижение содержания активного кислорода в металле, вследствие чего не произойдет снижение расхода ферросплавов, алюминия и легирующих материалов. Увеличение интенсивности и продолжительности продувки более 1200 м3/мин и 2,0 мин соответственно приводит к дополнительному охлаждению металла и увеличению материальных затрат на нагрев металла на агрегатах внепечной обработки.

Положение продувочной фурмы 0,4…0,6 м над уровнем металла выбрано с целью обеспечения наиболее эффективного перемешивания металла в конвертере. При увеличении положения фурмы над уровнем металла более 0,6 м будет в большей степени происходить перешивание оставшегося в конвертере шлака и недостаточное перемешивание металла, а при более глубоком погружении фурмы над уровнем металла менее 0,4 м приведет к дополнительному износу огнеупорной футеровки конвертера.

Пример конкретного осуществления способа.

Заявляемый способ получения стали был реализован при выплавке более 200 плавок стали марок К52, К60 в 370-тонных кислородных конвертерах.

В начале выплавки металла производили завалку в конвертер металлического лома в количестве 80…90 т, извести в количестве 6…8 т и заливку жидкого чугуна в количестве 310…320 т, содержащего 4,0…4,5% C, 0,5… 1,0% Si, менее 0,060% P, менее 0,035% S, температура жидкого чугуна составляла 1320…1380°С. По ходу продувки плавки в конвертер присаживали порциями по 1,0…2,0 т известь в количестве 15…20 т. Продолжительность продувки металла составляла от 14 до 18 мин, расход кислорода на продувку составил - 20500…21500 м3. В начале продувки металла положение фурмы составляло 0,6 м над уровнем металла, по ходу продувки кислородом производили погружение фурмы до уровня 0,2 м с интервалом в 0,05…0,1 м через каждые 3…4 мин продувки в зависимости от реакции металла и шлака в конвертере.

После окончания кислородной продувки металла производили частичное скачивание шлака в количестве 5…10 т, после чего производили подключение фурмы к азотной магистрали и далее проводили продувку металла азотом с интенсивностью 1000…1200 м3/мин продолжительностью 1,5…2,0 мин, во время продувки металла азотом обеспечивали положение фурмы 0,4…0,6 м над уровнем металла. Измерение окисленности металла проводили до и после продувки металла азотом.

При выплавке стали по заявленному способу произошло снижение окисленности металла в конвертере перед выпуском из конвертера в среднем с 1250 ppm до 1000 ppm, что привело к снижению удельного расхода ферросплавов и алюминия на 1,5 и 1,0 кг/т соответственно. Кроме того, произошло снижение отсортировки металла в прокатных цехах по дефектам «неметаллические включения» и «плены».

Похожие патенты RU2465337C1

название год авторы номер документа
СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 2019
  • Кушнарев Алексей Владиславович
  • Захаров Игорь Михайлович
  • Чиглинцев Алексей Викторович
  • Котляров Алексей Александрович
  • Галченков Сергей Валерьевич
  • Егоров Владимир Анатольевич
  • Еремеев Владимир Александрович
  • Ремиго Сергей Александрович
RU2732840C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 2009
  • Тахаутдинов Рафкат Спартакович
  • Ушаков Сергей Николаевич
  • Федонин Олег Владимирович
  • Николаев Олег Анатольевич
  • Бодяев Юрий Алексеевич
RU2386703C1
Способ выплавки стали в кислородном конвертере 2015
  • Сергеев Дмитрий Станиславович
  • Бигеев Вахит Абдрашитович
  • Колесников Юрий Алексеевич
  • Дудчук Игорь Анатольевич
RU2608008C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 1998
  • Айзатулов Р.С.
  • Протопопов Е.В.
  • Соколов В.В.
  • Комшуков В.П.
  • Буймов В.А.
  • Щеглов М.А.
  • Амелин А.В.
  • Шакиров К.М.
  • Пак Ю.А.
  • Ермолаев А.И.
  • Ганзер Л.А.
RU2135601C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 1990
  • Ганошенко Владимир Иванович[Ua]
  • Иванов Евгений Анатольевич[Ua]
  • Поживанов Михаил Александрович[Ua]
  • Мельник Сергей Григорьевич[Ua]
  • Конопля Виктор Григорьевич[Ua]
  • Плохих Петр Андреевич[Ua]
  • Гнедаш Александр Васильевич[Ua]
  • Бузун Игорь Леонидович[Ua]
  • Сапелкин Николай Николаевич[Ua]
  • Ромадыкин Сергей Дмитриевич[Ua]
  • Бусько Михаил Викторович[Ua]
RU2034037C1
СПОСОБ ПРОИЗВОДСТВА РЕЛЬСОВОЙ СТАЛИ 2009
  • Александров Игорь Викторович
  • Козырев Николай Анатольевич
  • Кузнецов Евгений Павлович
  • Бойков Дмитрий Владимирович
  • Тиммерман Наталья Николаевна
  • Корнева Лариса Викторовна
  • Могильный Виктор Васильевич
RU2415180C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 1999
  • Лисин В.С.
  • Скороходов В.Н.
  • Настич В.П.
  • Кукарцев В.М.
  • Мизин В.Г.
  • Захаров Д.В.
  • Савченко В.И.
  • Филяшин М.К.
  • Хребин В.Н.
  • Суханов Ю.Ф.
RU2159289C1
Способ производства стали в кислородном конвертере 2017
  • Кузнецов Сергей Николаевич
  • Протопопов Евгений Валентинович
  • Калиногорский Андрей Николаевич
  • Ганзер Лидия Альбертовна
RU2641587C1
СПОСОБ ВЫПЛАВКИ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 2003
  • Дорофеев Г.А.
RU2233890C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2001
  • Ламухин А.М.
  • Зинченко С.Д.
  • Филатов М.В.
  • Ордин В.Г.
  • Лятин А.Б.
  • Фогельзанг И.И.
  • Загорулько В.П.
  • Горшков С.П.
RU2202626C2

Реферат патента 2012 года СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ

Изобретение относится к черной металлургии, в частности к способу выплавки стали в кислородном конвертере. Способ включает подачу в конвертер жидкого чугуна и металлолома, шлакообразующих материалов, продувку металла кислородом сверху через погружную фурму, изменение по ходу продувки расхода кислорода и положения фурмы над уровнем расплава. После завершения кислородной продувки металла производят частичное скачивание шлака и проводят продувку металла азотом сверху через погружную фурму с интенсивностью 1000…1200 м3/мин продолжительностью 1,5…2,0 мин. Во время продувки металла азотом обеспечивают положение фурмы 0,4…0,6 м над уровнем металла. Использование изобретения обеспечивает снижение содержания неметаллических включений, образующихся при раскислении металла. 1 пр.

Формула изобретения RU 2 465 337 C1

Способ выплавки стали в кислородном конвертере, включающий подачу в конвертер жидкого чугуна и металлолома, шлакообразующих материалов, продувку металла кислородом сверху через погружную фурму, изменение по ходу продувки расхода кислорода и положения фурмы над уровнем расплава, отличающийся тем, что после завершения кислородной продувки металла производят частичное скачивание шлака и проводят продувку металла азотом сверху через погружную фурму с интенсивностью 1000…1200 м3/мин продолжительностью 1,5…2,0 мин, во время продувки металла азотом обеспечивают положение фурмы 0,4…0,6 м над уровнем металла.

Документы, цитированные в отчете о поиске Патент 2012 года RU2465337C1

СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 2009
  • Тахаутдинов Рафкат Спартакович
  • Ушаков Сергей Николаевич
  • Федонин Олег Владимирович
  • Николаев Олег Анатольевич
  • Бодяев Юрий Алексеевич
RU2386703C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ В КОНВЕРТЕРЕ 2006
  • Енин Александр Васильевич
  • Бодяев Юрий Алексеевич
  • Авраменко Виталий Алексеевич
  • Филиппов Юрий Михайлович
  • Парфилов Олег Валентинович
  • Снегирев Юрий Борисович
RU2341563C2
Способ получения ортоамидофенола 1933
  • Кирхгоф Г.А.
  • Спектор М.О.
SU39117A1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 1995
  • Стомахин А.Я.
  • Королев М.Г.
  • Смирнов В.А.
  • Чумарин Б.А.
  • Аксенов Ю.Д.
  • Савченко В.И.
  • Ярошенко А.В.
  • Васильев Г.И.
  • Лебедев В.И.
  • Дюбанов Г.В.
  • Рябов В.В.
RU2100447C1
JP 8327253 A, 13.12.1996
CN 1552919 A, 08.12.2004.

RU 2 465 337 C1

Авторы

Алексеев Леонид Вячеславович

Снегирев Владимир Юрьевич

Валиахметов Альфед Хабибуллаевич

Чайковский Юрий Антонович

Масьянов Сергей Владимирович

Филиппов Юрий Михайлович

Даты

2012-10-27Публикация

2011-07-08Подача