СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ Российский патент 1995 года по МПК C21C5/28 

Описание патента на изобретение RU2034037C1

Изобретение относится к черной металлургии, в частности к способам выплавки стали в кислородных конвертерах, мартеновских и дуговых печах.

Известны различные способы выплавки стали, в которых с целью снижения расхода жидкого чугуна используют кусковые углеродсодержащие теплоносители: кокс, антрацит, графитовый бой и другие. Эти способы позволяют за счет тепла экзотермического окисления углерода повысить расход металлического лома из расчета 2,0-2,5 кг/кг вводимого теплоносителя, что при расходе последнего 8-10 кг/т стали позволяет снизить расход жидкого чугуна на 16-25 кг/т стали.

Известны способы выплавки стали, в которых с целью снижения расхода жидкого чугуна используют карбид кремния, карбид кальция и карбид кремния, углеродоксикарбидный материал, алюминий и алюмосодержащие отходы.

К недостаткам существующих способов следует отнести высокую стоимость, специальное их производство или подготовку, кроме того вводятся в конвертер в холодном состоянии и они недостаточно эффективны. Химические теплоносители не являются металлошихтой, разжижающим материалом, следовательно, не улучшают шлакообразование и технологичность процесса по ходу продувки. При этом отмечается недостаточная степень усвоения теплоносителей и потери их с конечным шлаком.

Наиболее близким к предлагаемому по технической сущности и достигаемым результатом является способ выплавки стали в кислородном конвертере, в котором с целью снижения расхода жидкого чугуна (повышения доли лома в шихте) используют твердое топливо, 70-90% твердого топлива фракцией 6-25 мм от его общего расхода вводят в конвертер до начала продувки, а остальную часть вводят в интервале 10-40% продолжительности продувки при общем расходе топлива 0,5-3,5% от веса металлошихты.

Недостатком этого способа выплавки стали является использование в нем недостаточно эффективного химического и физического теплоносителя, который является твердым, следовательно, физически холодным материалом. Кроме того, он не является металлической частью шихты, не улучшает шлакообразование и рафинирование металла по ходу продувки конвертерной ванны. Следовательно, не улучшает технологичность процесса.

Целью изобретения является сокращение расхода жидкого чугуна за счет технологичности процесса, улучшения шлакообразования и рафинирования металла.

Поставленная цель достигается тем, что в способе выплавки стали в кислородном конвертере, включающем загрузку металлолома, теплоносителей, шлакообразующих, заливку жидкого чугуна и продувку кислородом при фиксированном положении фурмы над уровнем расплава, в качестве теплоносителя используют попутный металл и попутный шлак, полученные при производстве синтетического шлака, которые заливают в конвертер совместно с жидким чугуном, а продувку кислородом ведут в два периода с промежуточным скачиванием шлака, причем в первом периоде продувки фурму поднимают над ее фиксированном положением относительно уровня расплава в течение 12-15% времени от общей продолжительности продувки, а загрузку металлолома и шлакообразующих осуществляют порциями, при этом первую порцию шлакообразующих в количестве 28-29% от их общего расхода присаживают на дно конвертера, после чего загружают первую порцию металлолома в количестве 80-90% от его общего расхода, и заливают жидкий чугун совместно с попутным металлом и попутным шлаком, а вторую и третью порции шлакообразующих в количестве, равном 28-29% каждая от их общего расхода, присаживают в первый период продувки в течении 12-15 и 40-45% времени общей продолжительности продувки, соответственно, при этом вторую порцию металлолома в количестве 10-20% от общего расхода вводят в конвертер после промежуточного скачивания шлака, которое производят после 60-75% времени продувки, а последнюю порцию шлакообразующих в количестве 13-16% вводят во втором периоде продувки в течении времени, равном 70-75% от всей продолжительности продувки. Соотношение количества общей порции металла к расходу попутного металла на плавку, поддерживают равным 3:1. В первом периоде продувки при вводе попутного металла и попутного шлака, расход шлакообразующих определяют в зависимости от массы попутного шлака в соотношении 2-1.

Химический состав попутного металла, получаемого при производстве синтетического шлака, мас.я: Железо 35-67 Марганец 3-44 Кремний 14-44 Титан 1-14 Хром 1-20 Алюминий 0,2-6,0 Медь 0,3-1,5 Никель 0,1-0,7 Углерод 0,1-1,8 Сера 0,005-0,030 Фосфор 0,02-0,25
При выпуске ПМ из печи в заливочный ковш, как правило, попадает и попутный шлак (ПШ) в количестве 0,6-1,0 т/т ПМ, химический состав которого близок к составу синтетического шлака (СШ).

Химический состав попутного шлака, получаемого при производстве синтетического шлака, мас. СаО 40-48 Al2O3 35-45 SiO2 4-12 MgO 3-8 (FeO + MnO + Fe2O3) 1-3
Для определения тепловых потенциальных возможностей ПМ был выполнен сравнительный расчет теплосодержания ПМ и чугуна (табл. 1). При этом принят средний состав чугуна, С 4,1; Si 0,75; Mn 0,2. Средняя температура чугуна 1315оС.

Из табл. 1 следует, что теплосодержание ПМ значительно выше чугуна. Так, химическое тепло от окисления примесей из ПМ больше в 13,8 раз, а физическое в 1,5 раза. Основным источником химического тепла является кремний 50,7% Титан, алюминий и хром дают около 25% Общее теплосодержание ПМ превышает теплосодержание чугуна и 6,5 раз, что позволяет переплавлять на 1 т попутного металла 3 т лома, вместо 0,35 т на 1 т чугуна. Таким образом, ПМ может успешно использоваться в качестве металлошихты, физического и химического теплоносителя конвертерной плавки.

Высокая температура ПШ (1650-1700оС) и наличие в нем 40-48% CaO и 35-45% Al2O3 позволяет использовать его в качестве высокоэффективного шлакообразующего и разжижающего материала, что ускоряет формирование плавильного шлака по ходу продувки и позволяет исключить применение вредного для экологии и здоровья человека фтористого кальция (CaF2).

П р и м е р 1. На дно конвертера (емкость 375 т) загружают первую порцию извести, в количестве 28,5% (10,1 т), на первую порцию извести загружают первую порцию лома, в количестве 85% (118 т).

К этому времени в дуговой печи при плавке синтетического шлака накопилось достаточное количество ПМ. Для его сплава под желоб дуговой плавильной печи подают порожний заливочный чугуновозный ковш, в который сливается 20 т ПМ и 10 т ПШ. Ковш с ПМ и ПШ транспортируется в миксерное отделение, где на ПМ и ПШ сливается 226 т чугуна. Затем груженный чугуновозный ковш транспортируется в конвертерное отделение, где чугун, ПМ и ПШ сливаются в конвертер на 1-ю порцию извести и 1-ю порцию лома. Состав попутного металла: 49% Fe, 15,9% Mn, 19,2% Si, 6,8% Ti, 5,3% Cr, 1,8% Al, 1,1% Cu, 0,3% Ni, 0,5% С, 0,012% S и 0,13% Р. Состав попутного шлака: 45% СаО, 40% Al2O3, 8% SiO2, 5% MgO, 2% (FeO + +MnO + Fe2O3). Затем конвертер устанавливают в рабочее (вертикальное) положение и начинают первый период продувки металла кислородом. Интенсивность продувки 1250 нм3/мин. Положение фурмы в (первом периоде) начале продувки следующее:
Время, 0 3 6 9 12 15 18
Высота фурмы, м 4,5 4,0 3,5 3,0 2,5 1,9 1,9
По ходу продувки в конвертер присаживают вторую порцию извести, в количестве 28,5% (10,1 т) в течение 12-15% (на 2-3 мин продувки) времени от общей продолжительности продувки; третью порцию извести, в количестве 28,5% (10,1 т), присаживают в конвертер в течение 40-45% времени (на 7-8 мин продувки).

На 65-70% времени (11,0-11,5 мин) фурму поднимают с одновременным прекращением подачи кислорода. Первый период продувки завершился, наклонили конвертер и слили 85% кремнеземистого шлака. Загрузили в конвертер вторую порцию лома, в количестве 15% (21 т). Конвертер установили снова в рабочее (вертикальное) положение и начали второй период продувки. В течение 70-75% времени (на 12-13 минуте продувки) присадили в конвертер четвертую порцию извести в количестве 14,5% от общего расхода (5,1 т). По завершению всей продувки, 100% времени (на 18-19 мин) подняли фурму с прекращением подачи кислорода. Завершился второй период продувки. Суммарный расход кислорода на плавку составил 20500 нм3. При комбинированной продувке кислородом расход его сверху составляет 80-90% снизу 10-20 от общего расхода.

Другие примеры по прототипу и заявляемому способу выплавки стали в конвертере с включением всех других отличительных признаков приведены в табл. 2. В таблице приводятся изменения, как правило, одного или двух параметров, если они между собой взаимосвязаны. Остальные параметры приняты равными:
продувку ведут в два периода τ1п (0,65-0,70) τпр2п (0,30-0,35) τпр;
масса попутного металла 20 т;
масса попутного шлака 10 т;
расход извести на I-III и IV порциях 28,5 и 14,5% соответственно;
присадки I, II, III и IV порций извести во времени производят в течение 0,12-15, 40-45; 70-75% времени во всей продолжительности продувки;
первая и вторая порции лома составляют 85 и 15% от его общего расхода на плавку;
соотношение Мл Мпм 3 1,
соотношение Мпш Мизв 2 1,
слив промежуточного кремнеземистого шлака производят по завершению 1-го периода продувки;
длительность продувки с повышенным положением фурмы 14% времени от всей продолжительности продувки. Приведенные в табл. 1 данные показывают, что попутный металл и шлак являются высокоэффективным химическим и физическим теплоносителями по сравнению с приведенными в прототипах. Они позволяют значительно увеличить долю лома в металлошихте, следовательно, существенно снизить расход дефицитного чугуна, улучшить процесс шлакообразования конвертерной плавки, исключив из плавки плавиковый шпат, повысить технологичность процесса, в результате чего успешно достигается поставленная цель изобретения.

Похожие патенты RU2034037C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА СТАЛИ В КОНВЕРТЕРЕ 1990
  • Ганошенко Владимир Иванович[Ua]
  • Иванов Евгений Анатольевич[Ua]
  • Носоченко Олег Васильевич[Ua]
  • Караваев Николай Михайлович[Ua]
  • Конопля Виктор Григорьевич[Ua]
  • Плохих Петр Андреевич[Ua]
  • Поживанов Михаил Александрович[Ua]
  • Гнедаш Александр Васильевич[Ua]
  • Сапелкин Николай Николаевич[Ua]
RU2034038C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ 2005
  • Мокринский Андрей Викторович
  • Лаврик Александр Никитович
  • Протопопов Евгений Валентинович
  • Соколов Валерий Васильевич
  • Щеглов Михаил Александрович
  • Казьмин Алексей Иванович
  • Буймов Владимир Афанасьевич
  • Ермолаев Анатолий Иванович
  • Волынкина Екатерина Петровна
  • Машинский Валентин Михайлович
  • Липень Владимир Вячеславович
  • Ганзер Лидия Альбертовна
  • Щеглов Сергей Михайлович
RU2287018C2
Способ выплавки стали в конвертере 1990
  • Кушнарев Сергей Игоревич
  • Старов Ремуальд Викторович
  • Поляков Владимир Федорович
  • Сахно Валерий Александрович
  • Носоченко Олег Васильевич
  • Ганошенко Владимир Иванович
  • Вяткин Юрий Федорович
  • Караваев Николай Михайлович
  • Иванов Евгений Анатольевич
  • Поживанов Михаил Александрович
  • Семенченко Петр Михайлович
  • Гнедаш Александр Васильевич
  • Мельник Сергей Григорьевич
SU1786093A1
Способ выплавки стали 1985
  • Липухин Юрий Викторович
  • Жаворонков Юрий Иванович
  • Климов Леонид Петрович
  • Молчанов Олег Евгеньевич
  • Зинченко Сергей Дмитриевич
  • Кириленко Виктор Петрович
  • Юзов Сергей Вениаминович
SU1339133A1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 1991
  • Назюта Людмила Юрьевна[Ua]
  • Борисов Юрий Николаевич[Ua]
  • Лыков Владимир Андреевич[Ua]
  • Зражевский Александр Данилович[Ua]
  • Учитель Лев Михайлович[Ua]
  • Сасин Аркадий Гергиевич[Ua]
  • Бродский Сергей Сергеевич[Ua]
  • Харахулах Василий Сергеевич[Ua]
RU2048533C1
Способ выплавки стали в кислородном конвертере 1985
  • Дюдкин Дмитрий Александрович
  • Куликов Игорь Вячеславович
  • Мастицкий Анатолий Иванович
  • Терзиян Сергей Павлович
  • Харахулах Василий Сергеевич
  • Купершток Владимир Ефимович
  • Гнедаш Александр Васильевич
  • Сколобанов Анатолий Венедиктович
SU1330168A1
СПОСОБ ПРОИЗВОДСТВА ПРИРОДНО-ЛЕГИРОВАННОЙ ВАНАДИЕМ СТАЛИ ПРИ ПЕРЕДЕЛЕ ВАНАДИЕВОГО ЧУГУНА В КИСЛОРОДНЫХ КОНВЕРТЕРАХ МОНОПРОЦЕССОМ С РАСХОДОМ МЕТАЛЛОЛОМА ДО 30% 1997
  • Александров Б.Л.
  • Аршанский М.И.
  • Комратов Ю.С.
  • Криночкин Э.В.
  • Кузовков А.Я.
  • Петренев В.В.
  • Чернушевич А.В.
RU2105072C1
СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ 2011
  • Алексеев Леонид Вячеславович
  • Снегирев Владимир Юрьевич
  • Валиахметов Альфед Хабибуллаевич
  • Чайковский Юрий Антонович
  • Масьянов Сергей Владимирович
  • Филиппов Юрий Михайлович
RU2465337C1
СПОСОБ ПЕРЕДЕЛА НИЗКОМАРГАНЦОВИСТОГО ЧУГУНА В КОНВЕРТЕРЕ 1997
  • Мартыненко А.К.
  • Королев М.Г.
  • Щелканов В.С.
  • Хайдуков В.П.
  • Сафонов И.В.
  • Караваев Н.М.
RU2118375C1
СПОСОБ ПЕРЕДЕЛА НИЗКОМАРГАНЦОВИСТОГО ЧУГУНА В КОНВЕРТЕРЕ С ПРЕДВАРИТЕЛЬНЫМ НАГРЕВОМ ЛОМА 2008
  • Шахпазов Евгений Христофорович
  • Пак Юрий Алексеевич
  • Глухих Марина Владиславовна
  • Дейнеко Андрей Дмитриевич
  • Левада Антон Григорьевич
  • Ваганов Евгений Юрьевич
  • Валитов Валерий Галиевич
RU2380429C1

Иллюстрации к изобретению RU 2 034 037 C1

Реферат патента 1995 года СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ

Использование: в черной металлургии, в частности в производстве стали в конвертерах. Сущность изобретения: на плавку в конвертер вводят в качестве теплоносителя попутный жидкий металл и шлак, полученный при производстве синтетического шлака. Продувку жидкого металла кислородом осуществляют в два периода с промежуточным скачиванием шлака. Известь и лом присаживают порциями в зависимости от периода продувки. В первый период продувки присаживают лом в количестве 80 - 90% от общего расхода на плавку, а известь вводят в конвертер порциями: первую порцию, в количестве 28 - 29% от общего расхода, присаживают на дно конвертера, вторую порцию, в количестве 28 - 29% - после 12 - 15% времени от общей продолжительности продувки, третью порцию, в количестве 28 - 29% - после 40 - 45% времени продувки. Во второй период продувки присаживают лом в количестве 10 - 20% и порцию извести в количестве 13 - 16% - через 70 - 75% от общей продолжительности продувки. Соотношение общего количества лома к расходу попутного металла на плавку составляет 3 : 1. При вводе в первом периоде продувки попутного металла и попутного шлака снижают расход извести в соотношении 2 : 1 от массы попутного шлака. С целью удаления кремнеземистого шлака из конвертера, слив его осуществляют после расплавления лома, через 65 - 70% времени от начала всей продувки. Для снижения выбросов шлака и металла из конвертера, начальный период продувки с повышенным положением фурмы над ее фиксированным составляет 12 15% времении от общей продолжительности продувки. 2 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 034 037 C1

1. СПОСОБ ВЫПЛАВКИ СТАЛИ В КИСЛОРОДНОМ КОНВЕРТЕРЕ, включающий загрузку металлолома, теплоносителей, шлакообразующих, заливку жидкого чугуна и продувку кислородом при фиксированном положении фурмы над уровнем расплава, отличающийся тем, что, с целью сокращения расхода жидкого чугуна за счет технологичности процесса, улучшения шлакообразования и рафинирования металла, в качестве теплоносителя используют попутный металл и попутный шлак, полученные при производстве синтетического шлака, которые заливают в конвертер совместно с жидким чугуном, а продувку кислородом ведут в два периода с промежуточным скачиванием шлака, при этом в первом периоде продувки фурму поднимают над ее фиксированным положением относительно уровня расплава в течение 12 15% времени от общей продолжительности продувки, а загрузку металлолома и шлакообразующих осуществляют порциями, причем первую порцию шлакообразующих в количестве 28 29% от их общего расхода присаживают на дно конвертера, после чего загружают первую порцию металлолома в количестве 80 - 90% от его общего расхода и заливают жидкий чугун совместно с попутным металлом и попутным шлаком, а вторую и третью порции шлакообразующих в количестве, равном 28 29% каждая от их общего расхода, присаживают в первый период продувки в течение 12 15 и 40 45% времени общей продолжительности продувки соответственно, при этом вторую порцию металлолома в количестве 10 - 20% от общего расхода вводят в конвертер после промежуточного скачивания шлака, которое производят после 60 75% времени продувки, а последнюю порцию шлакообразующих в количестве 13 16% вводят во втором периоде продувки в течение времени, равном 70 75% всей продолжительности продувки. 2. Способ по п.1, отличающийся тем, что соотношение общего количества металлолома и расхода попутного металла на плавку поддерживают равным 3 1. 3. Способ по пп.1 и 2, отличающийся тем, что в первом периоде продувки при вводе попутного металла и попутного шлака расход шлакообразующих определяют в зависимости от массы попутного шлака в отношении 2 1.

Документы, цитированные в отчете о поиске Патент 1995 года RU2034037C1

Способ выплавки стали в кислородном конвертере 1976
  • Баптизманский Вадим Ипполитович
  • Бойченко Борис Михайлович
  • Черевко Виктор Павлович
  • Дмитриев Юрий Владимирович
  • Душа Виктор Михайлович
  • Андрющенко Виктор Николаевич
  • Колесник Виктор Дмитриевич
  • Михайленко Федор Герасимович
  • Борисов Юрий Николаевич
SU594179A1
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 034 037 C1

Авторы

Ганошенко Владимир Иванович[Ua]

Иванов Евгений Анатольевич[Ua]

Поживанов Михаил Александрович[Ua]

Мельник Сергей Григорьевич[Ua]

Конопля Виктор Григорьевич[Ua]

Плохих Петр Андреевич[Ua]

Гнедаш Александр Васильевич[Ua]

Бузун Игорь Леонидович[Ua]

Сапелкин Николай Николаевич[Ua]

Ромадыкин Сергей Дмитриевич[Ua]

Бусько Михаил Викторович[Ua]

Даты

1995-04-30Публикация

1990-07-02Подача