Изобретение относится к электрохимической обработке поверхности титановых сплавов для повышения адгезионной способности к лакокрасочным покрытиям (ЛКП) и может быть использовано в различных отраслях промышленности, в том числе авиационной, космической, автомобильной, судостроительной, строительной и архитектуре и т.д., где применяются титановые сплавы с декоративной окраской.
Известно, что титановые сплавы в связи с высокой пассивируемостью их в атмосферных условиях, особенно с повышенной влажностью, обладают очень низкой адгезионной способностью к различным материалам. В связи с этим, нанесенные на них лакокрасочные покрытия при эксплуатации изделий в различных климатических условиях часто отслаиваются от поверхности титановых сплавов и изделия теряют декоративный вид. Поэтому перед нанесением лакокрасочного покрытия на поверхность титанового сплава необходимо нанести на нее промежуточный слой, который бы имел высокую адгезию к поверхности металла и к лакокрасочному покрытию.
Известен способ анодирования металлов импульсным током, в котором процесс ведут в условиях искрового разряда при напряжении 80-200 V и плотностях тока от 10 до 80 А/дм2 (а.с. СССР №534525).
Известен способ анодного окисления титановых сплавов в электролите, содержащем неорганические фториды, бораты, фосфаты, органические растворители и воду, предназначенный для создания изоляционного покрытия на титановых сплавах в электронике (патент США №3502552).
Известен электролитический способ и композиция для окрашивания титана и его сплавов, дающий тонкие плотные цветные пленки (патент США №3616279).
Недостатком известных способов является низкая адгезионная способность плотных анодных пленок к ЛКП, особенно, во влажной атмосфере.
Известен способ получения фосфатного покрытия, обладающего высокой адгезионной способностью и высокой коррозионной стойкостью, для чего поверхность металла подвергают катодной электролитической обработке при низкой температуре в растворе, содержащем фосфат ионы и другие анионы, а также ионы порошкообразного металла. Отношение фосфат ионов ко всем другим анионам составляет 0,6-0,08 (патент Японии №2080468).
Благодаря наличию большого количества активных ионов происходит значительное травление металла, что повышает адгезию образующегося фосфатного покрытия.
Недостатком известного способа является низкая адгезионная способность как к ЛКП, так и к титановому сплаву.
Известен способ обработки поверхности титановых изделий под склеивание (анодирование в кислотной ванне, содержащей хромовую и фтористоводородную кислоты) при низком потенциале (от 1 до 5 вольт) (патент США №4473446).
Недостатком данного способа является низкая адгезия получаемого покрытия к ЛКП, высокая токсичность электролита и сложность его утилизации.
Наиболее близким к изобретению по технической сущности и достигаемому результату и принятым за прототип является способ фосфатирования поверхности титанового сплава, включающий обезжиривание, промывку водой, обработку поверхности сплава окислительным раствором на основе смеси азотной и плавиковой кислот или окисью магния, фосфатирование поверхности титанового сплава путем обработки раствором, содержащим ионы цинка, ионы нитрата, ионы фосфата, ионы сульфата, ионы фтора и ионы тартрата при следующем соотношении компонентов (г/л):
повторную промывку и сушку
Температура раствора для фосфатирования 18-30°C, а pH 2,0-3,2 (патент РФ №2255139).
Способ предназначен для получения фосфатного покрытия, имеющего высокую адгезию к поверхности металла и к лакокрасочному покрытию.
Недостатками известного способа являются: длительность процесса фосфатирования (120 минут); сложность приготовления раствора для фосфатирования (6 компонентов) и наличие токсичных соединений (соли серной и фтористоводородной кислот).
Технической задачей изобретения является создание способа фосфатирования поверхности титанового сплава, позволяющего обеспечить высокую адгезионную способность титанового сплава к лакокрасочным покрытиям на уровне прототипа без наводороживания поверхности, снижение длительности процесса фосфатирования и токсичности раствора.
Для решения поставленной задачи предложен способ фосфатирования поверхности титанового сплава, включающий обезжиривание, промывку водой, обработку поверхности сплава окислительным раствором на основе смеси азотной и плавиковой кислот или окисью магния, фосфатирование поверхности титанового сплава путем обработки раствором, содержащим ионы фосфата и цинка, повторную промывку и сушку, в котором, титановые сплавы подвергают анодному фосфатированию при воздействии постоянного тока в растворе, дополнительно содержащем ионы калия при следующем соотношении компонентов (г/л): РO4 -3 10,5-12,5
Zn+2 3,5-4,5
K+1 1,0-1,5
При этом pH раствора поддерживают в интервале 4,0-5,0.
Анодное фосфатирование осуществляют при плотности тока 5-6 А/дм2 в течение 4-6 минут.
В предлагаемом способе используют постоянный ток для интенсифицирования движения ионов в электролите, что ускоряет процесс фосфатирования.
Образование фосфатного покрытия после обработки поверхности титанового сплава обеспечивает высокую адгезионную способность.
Введение иона K+1 способствует образованию комплексной соли, диссоциация которой облегчает образование фосфатов на поверхности образца.
Более низкие концентрации ионов РO4 -3 и Zn+2, а также отсутствие токсичных ионов SO4 -2 и F-1 существенно снижают токсичность раствора по сравнению с прототипом.
Плотность тока и время его воздействия выбираются и могут быть различными в зависимости от требуемой толщины и качества покрытия.
Примеры осуществления
Пример 1. Образец из титанового сплава ВТ20, размером 70×150×1,2 мм обезжиривали в стандартном щелочном растворе по ГОСТ 9.047-75. После промывки в воде обрабатывали окислительным раствором в смеси азотной и плавиковой кислот, после чего подвергали анодному фосфатированию при действии постоянного тока плотностью 5 А/дм2 в течение 4 минут и температуре 20°C, повторной промывке и сушке при температуре 120°C. На подготовленную поверхность наносили лакокрасочное покрытие (окраска: эпоксидный грунт ВГ 28, сушка 24 часа, затем эмаль С 21/100 UVR 2 слоя, сушка каждого слоя 1 час, затем выдержка до испытаний 7-10 суток), после чего определяли адгезию. Испытание на адгезию проводили согласно ГОСТ 15140-78 методом параллельных надрезов (метод 4) до и после выдержки образцов в дистиллированной воде в течение 14 суток.
Примеры 2 и 3 аналогичны примеру 1 и выполнены соответственно для сплава ВТ6ч и ОТ4.
В таблице приведены режимы обработки поверхности титанового сплава, составы растворов и величина адгезии после выдержки образцов в дистиллированной воде в течение 14 суток. Все испытанные образцы прошли испытания в дистиллированной воде без отслоения ЛКП.
Так как титановые сплавы очень чувствительны к наводороживанию в зависимости от различных видов химической и электрохимической обработки, определяли содержание водорода в поверхностном слое сплава спектральным локальным методом согласно ОСТ 190034-81.
Все растворы, взятые для испытаний, не дают наводороживания поверхности образцов в силу того, что образцы в процессе фосфатирования являются анодом. Содержание водорода на их поверхности ниже нормы, указанной в ОСТ 190013 (не более 0,015 мас.%).
Таким образом, предлагаемый способ по сравнению с прототипом позволит обеспечить высокую адгезионную способность титановых сплавов на уровне прототипа без наводороживания поверхности, сократить длительность процесса фосфатирования в 20-30 раз и снизить токсичность фосфатирующего раствора.
Использование предлагаемого способа позволит снизить экологическую нагрузку, повысить производительность труда и дать существенный экономический эффект при массовом изготовлении фосфатированных титановых деталей, что расширит область их применения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ФОСФАТИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНОВОГО СПЛАВА | 2003 |
|
RU2255139C1 |
СПОСОБ ФОСФАТИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНОВОГО СПЛАВА | 2005 |
|
RU2299268C1 |
СПОСОБ ОБРАБОТКИ МАГНИЕВЫХ СПЛАВОВ ПЕРЕД НАНЕСЕНИЕМ ЛАКОКРАСОЧНОГО ПОКРЫТИЯ | 1991 |
|
SU1824950A1 |
СОСТАВ ДЛЯ ХИМИЧЕСКОЙ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ АЛЮМИНИЯ И ЕГО СПЛАВОВ | 2009 |
|
RU2409702C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ ДЛЯ ЗАЩИТЫ ОТ КОРРОЗИИ СТАЛЬНЫХ ДЕТАЛЕЙ | 2000 |
|
RU2177055C1 |
СПОСОБ ФОСФАТИРОВАНИЯ МЕТАЛЛИЧЕСКОЙ ПОВЕРХНОСТИ | 2000 |
|
RU2210624C2 |
СПОСОБ НАНЕСЕНИЯ ФОСФАТИРУЮЩЕГО СОСТАВА | 2002 |
|
RU2225895C2 |
РАСТВОР ДЛЯ ОДНОВРЕМЕННОГО ОБЕЗЖИРИВАНИЯ И ФОСФАТИРОВАНИЯ | 2000 |
|
RU2194799C2 |
РАСТВОР ДЛЯ ФОСФАТИРОВАНИЯ СТАЛЬНЫХ ПОВЕРХНОСТЕЙ | 1997 |
|
RU2123067C1 |
СПОСОБ ПОЛУЧЕНИЯ АКТИВАТОРА ДЛЯ МАРГАНЕЦФОСФАТИРОВАНИЯ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ | 1998 |
|
RU2138439C1 |
Изобретение относится к электрохимической обработке поверхности титановых сплавов и может быть использовано в различных отраслях промышленности, в том числе авиационной, космической, автомобильной, судостроительной, строительной и архитектуре, и т.д. Способ включает обезжиривание поверхности, промывку водой, обработку поверхности сплава окислительным раствором на основе смеси азотной и плавиковой кислот или окисью магния, фосфатирование поверхности титанового сплава путем обработки раствором, содержащим ионы фосфата и цинка, повторную промывку и сушку. Титановые сплавы подвергают анодному фосфатированию при воздействии постоянного тока в растворе, дополнительно содержащем ионы калия, при следующем соотношении компонентов (г/л): PO4 -3 10,5-12,5, Zn+2 3,5-4,5, K+1 1,0-1,5, при этом pH раствора поддерживают в интервале 4,0-5,0. Фосфатирование осуществляют при плотности тока 5-6 А/дм2 в течение 4-6 минут. Изобретение позволяет повысить адгезионную способность поверхности деталей из титановых сплавов к лакокрасочным покрытиям, снизить длительность процесса фосфатирования и токсичность раствора. 2 з.п. ф-лы, 1 табл.
1. Способ фосфатирования поверхности титанового сплава, включающий обезжиривание, промывку водой, обработку поверхности сплава окислительным раствором на основе смеси азотной и плавиковой кислот или окисью магния, фосфатирование поверхности титанового сплава путем обработки раствором, содержащим ионы фосфата и цинка, повторную промывку и сушку, отличающийся тем, что поверхность титанового сплава подвергают анодному фосфатированию при воздействии постоянного тока в растворе, дополнительно содержащем ионы калия, при следующем соотношении компонентов, г/л:
2. Способ по п.1, отличающийся тем, что pH раствора поддерживают в интервале 4,0-5,0.
3. Способ по п.1, отличающийся тем, что анодное фосфатирование осуществляют при плотности тока 5-6 А/дм2 в течение 4-6 мин.
СПОСОБ ФОСФАТИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНОВОГО СПЛАВА | 2003 |
|
RU2255139C1 |
СПОСОБ ФОСФАТИРОВАНИЯ ПОВЕРХНОСТИ ТИТАНОВОГО СПЛАВА | 2005 |
|
RU2299268C1 |
Прибор для измерения углов | 1928 |
|
SU12533A1 |
US 2009250351 A1, 08.10.2009 | |||
US 4473446 A, 25.09.1984. |
Авторы
Даты
2012-11-10—Публикация
2011-10-17—Подача