СПОСОБ ПОЛУЧЕНИЯ СУБСТАНЦИИ L-ЛИЗИН-АЛЬФА-ОКСИДАЗЫ Российский патент 2013 года по МПК C12N9/02 C12N9/04 C12N9/00 C12R1/885 

Описание патента на изобретение RU2471866C1

Изобретение относится к биотехнологии и медицине (а именно, к онкологии) и может быть использовано для создания современной технологии получения противоопухолевого средства и для химиотерапии злокачественных новообразований.

Опухолевые клетки в связи с высокой скоростью роста и деления не успевают самостоятельно обеспечивать себя мономерными молекулами для процессов биосинтеза белков и нуклеиновых кислот и нуждаются в доставке готовых аминокислот и нуклеотидов. L-лизин является незаменимой аминокислотой, т.е. он не синтезируется в тканях организма, а должен поступать извне с пищей. Поэтому истощение пула свободного L-лизина может существенно тормозить рост опухолевых клеток, которые делятся и растут интенсивнее, чем клетки здоровых тканей и более чувствительны к отсутствию незаменимых факторов роста.

L-лизин-альфа-оксидаза (ЛО) (КФ 1.4.3.14.) является типичной оксидазой L-аминокислот и преимущественно катализирует реакцию окислительного дезаминирования альфа-аминогруппы только одной аминокислоты L-лизина, причем в ходе реакции образуются альфа-кето-епсилон-аминокапроновая кислота, пероксид водорода и ионы аммония. Именно это свойство ЛО и определяет ее противоопухолевое действие. При введении ЛО в организм человека происходит снижение почти до нулевого уровня концентрации L-лизина в крови и в целом в тканевом пуле аминокислот. Следствием этого является ингибирование синтеза белка и нуклеиновых кислот и, в конечном счете, гибель раковых клеток.

Единственным ферментом, используемым в онкологической практике для терапии злокачественных новообразований, является L-аспарагиназа [«Вопросы онкологии», 2011. Т.57. №2. С.155-164]. К настоящему времени накоплена обширная информация, которая указывает на необходимость использования субстанций этого фермента, полученных из различных штаммов-продуцентов. Это связано с тем, что препараты фермента из различных источников отличаются по своим биологическим свойствам, причем их иммунологическая реактивность чаще всего не совпадает.

Для расширения спектра противоопухолевых ферментов и, в частности, для расширения спектра L-лизин-альфа-оксидаз существенным является получение ферментов из различных источников.

Впервые гомогенный препарат ЛО был получен с выходом 8% и удельной активностью 66 Е/мг японскими учеными из Trichoderma viride Y-244. Метод очистки был 8-стадийный, очень трудоемкий, недостаточно эффективный и, соответственно, дорогой, не позволяющий производить фермент в больших количествах из-за использования метода гель-фильтрации, который предполагает использование очень длинных хроматографических колонок и нанесение небольших количеств разделяемой смеси [Патент США 4234691, 18.11.1980]. Затем российскими исследователями была разработана 4-стадийная очистка с выходом 56% и удельной активностью 31,5 Е/мг. Метод был более простым и экономичным, но не позволял получать субстанцию ЛО, характеризующуюся высокой удельной активностью [«Вопросы медицинской химии», 1985, т.31, №5, с.130-134).

Немецкими исследователями [Journal of Basic Microbiology, Volume 34, Issue 4, pages 265-276, 1994] был предложен эффективный метод очистки ЛО, обеспечивающий 60%-ный выход фермента, экскретируемого грибом Trichoderma viride i4, степень очистки составляла 300, а удельная активность препарата - 90 Е/мг. Но этот метод осуществлялся с использованием большого количества ацетона - до 60% от объема реакционной среды. При применении ацетона в производственных условиях возникают проблемы как экологического характера, так и техники безопасности на производстве.

Наиболее близким к предлагаемому способу - прототипом является способ получения ЛО путем культивирования штамма гриба Trichoderma harzianum Rifai F-180 на содержащей источники азота, фосфата и пшеничные отруби среде и последующего выделения фермента из культуральной жидкости, включающего осаждение примесей сульфатом аммония 15%-ного насыщения и их удаление, осаждение ЛО сульфатом аммония 70%-ного насыщения, диализ с целью перевода ЛО в растворимое состояние и удаления сульфата аммония, последующую ионообменную хроматографию (элюпия в 0,3-0,8 М градиенте концентраций NaCl) и доочистку гель-фильтрацией на сефадексе [Патент РФ №2233171, A61K 38/44, 27.07.2004].

Недостатками способа являются недостаточно высокая продуктивность указанного штамма; использование при выделении фермента высоких концентраций сульфата аммония (до 70% насыщения), который затем приходится выбрасывать в окружающую среду, что приводит к ее загрязнению; большое количество стадий, низкий выход из культуральной жидкости целевого продукта - субстанции ЛО (4,5% при использовании 9-стадийного метода очистки; 8% при использовании 5-стадийного метода) и неудовлетворительное качество полученного препарата (из-за его недостаточной очистки на электрофореграмме имеются дополнительные полосы). Способ позволяет получать лишь небольшие количества целевого продукта (0,4 мг; 1,4 мг), поскольку стадия доочистки ЛО гель-фильтрацией нетехнологична (не позволяет разделять большие количества веществ, требует использования очень длинных хроматографических колонок) и плохо подходит для масштабирования процесса. Максимальная удельная активность ЛО - 200 Е/мг белка при 37°С. Следует также отметить, что удовлетворительная биологическая активность композиций ЛО из гриба Trichoderma harzianum Rifai F-180 отмечается только в присутствии усилителей биологической активности (антиоксиданты, витаминный препарат, иммуномодуляторы, липополисахариды, пирогены, противогельминтные средства и др.).

Задача настоящего изобретения - усиление биосинтеза, создание экологичного метода, пригодного для получения больших количеств высокоочищенной конечной субстанции ЛО, увеличение выхода субстанции ЛО в процессе выделения и очистки, а также достижение ее более высокой удельной активности.

Задача решается путем биосинтеза ЛО с помощью депонированного во Всесоюзной коллекции микроорганизмов ИБФМ РАН штамма гриба Trichoderma cf. aureoviride Rifai BKMF-4268D, проведения выделения и очистки фермента, используя следующий порядок стадий: диализ культуральной жидкости, обработка адсорбентами, осаждение примесей сульфатом аммония 20% степени насыщения, гидрофобная и ионообменная хроматография.

Нижеприведенные примеры иллюстрируют предлагаемое изобретение.

Пример 1. В биосинтезе использовали гриб Trichoderma cf. aureoviride Rifai BKMF-4268D, депонированный во Всероссийской коллекции микроорганизмов ИБФМ РАН. Для поддержания штаммов была использована среда на основе сусло-агара.

В качестве инокулята использовали культуру, выращенную на твердом субстрате (пшеничные отруби). Среда роста инокулята содержала 7 г отрубей и 10 мл дистиллированной воды. После 5-6 суток роста отруби заливали 100 мл стерильной дистиллированной воды, инкубировали при перемешивании (на качалке 220 об/мин) в течение 2 час. Жидкую фазу использовали для засева реакционной среды в ферментере в количестве 5% к объему реакционной среды.

Процесс ферментации (биосинтеза) проводили в следующих условиях: отруби пшеничные - 5-20%, аммоний азотнокислый - 5-20%, K2HPO4, 25 мМ (0,4%); pO2 - 70-80%, pH не выше 6,0-6,5, при температуре 29°С. Время ферментации - до 10-12 суток.

Использовали биореакторы усовершенствованной конструкции на основе АНКУМ (общий объем -10 л, рабочий объем - 5 л), снабженные датчиками пены, pH, температуры и pO2, что позволяло проводить процесс в контролируемых условиях с использованием средств, предотвращающих пенообразование. В ходе процесса следили за его стерильностью и динамикой накопления ЛО в культуральной жидкости.

Определение активности L-лизин-α-оксидазы проводили по скорости образования пероксида водорода в 20 мМ трис-фосфатном буфере (pH 8,0) в присутствии o-дианизидина (0,2 мМ), пероксидазы (5 мкг/мл) и L-лизина (2,0 мМ) на спектрофотометре «Shimadzu» (E436=8,3 мМ-1 см-1). За единицу активности принимали количество фермента, катализирующего окисление 1 мкмоля лизина в мин при 37°С.

Концентрацию белка как в процессе ферментации, так и при процедурах очистки, определяли по методу Бредфорда. Кумасси бриллиантовый синий G-250 (100 мг) растворяли в 50 мл 95%-ного этанола. Добавляли 100 мл 85%-ной фосфорной кислоты. Разбавляли водой до 1 л. Образец (разбавленный в случае необходимости), содержащий 10-100 мкг белка в 0,1 мл, добавляли к 3 мл реагента-красителя, хорошо перемешивали и измеряли оптическую плотность при 595 нм относительно чистого реагента. Содержание белка определяли по калибровочному графику, полученному с использованием бычьего сывороточного альбумина известной концентрации.

После окончания процесса ферментации культуральную жидкость из ферментера (~3,7 л) сливали в стеклянную бутыль. Ферментер промывали дистиллированной водой (0,5 л). Промывные воды сливали в ту же бутыль, объединяя их с основной культуральной жидкостью. Для отделения от отрубей и мицелия грибов культуральную жидкость фильтровали. Осадок также промывали дистиллированной водой и отбрасывали. Фильтраты объединяли и центрифугировали. По окончании процесса ферментации в культуральной жидкости содержалось около 17 Е/мл ЛО. Ферментации были проведены еще 3 раза, стабильность результатов биосинтеза ЛО отражена в табл.1

Культуральную жидкость диализировали против дистиллированной воды (10 л) в течение 24 часов при 0-4°С. В результате этой процедуры происходит частичное (до 50%) удаление пигмента без изменения ферментативной активности ЛО. К диализату добавляли сефадекс QAE-A25 (Sigma) и тщательно перемешивали в течение 15-20 минут, затем сефадекс QAE-A25 удаляли декантацией, центрифугированием или фильтрованием. Активность ЛО в супернатанте при этом снижалась всего на 5-10%. С целью многократного использования сефадекс QAE-A25 регенерировали.

Осветленную культуральную жидкость переливали в новый стакан, добавляли (50 мл) DEAE-Toyepearl и перемешивали в течение 15-20 мин, в результате чего практически вся ЛО сорбировалась на носителе. Надосадочную жидкость сливали, а осадок промывали водой. С DEAE-Toyepearl дважды смывали ЛО порциями 0,5 М NaCl. Получали 250-300 мл раствора ЛО (DEAE-Toyepearl регенерировали). К полученному раствору ЛО (250-300 мл) добавляли сульфат аммония до 20% насыщения, в результате чего выпадал не содержащий ЛО осадок примесей, который удаляли центрифугированием.

Раствор наносили на колонку с октил-сефарозой (2×30 см), предварительно уравновешенную трис-HCl буфером (50 мМ, pH 8,0), содержащим сульфат аммония (20% насыщения). Затем колонку промывали тем же раствором. Элюцию фермента проводили буферным раствором, содержащим сульфат аммония в концентрации 5% насыщения.

Активные фракции ЛО после гидрофобной хроматографии диализировали против воды. Затем фермент наносили на колонку (2×30 см) с DEAE Toyepearl и промывали водой. Раствором NaCl проводили элюцию конечного продукта - ЛО, удельная активность которой составляла 270 Е/мг. Гомогенность субстанции ЛО проверяли методом SDS электрофореза в полиакриламидном геле. Выход процесса выделения и очистки ЛО составил 67%. Субстанция ЛО может быть получена в лиофилизированном виде с потерей не более 5% ферментативной активности. Результаты получения гомогенной субстанции L-лизин-альфа-оксидазы из Trichoderma cf. aureoviride Rifai BKMF-4268D представлены в табл.2.

Физико-химические и каталитические характеристики ЛО по изобретению и прототипу практически совпадают. Молекулярная масса равна 115-116 кДа (определена с помощью гель-фильтрации и нативного электрофореза). По данным SDS-электрофореза ЛО является димером с одинаковыми субъединицами (57-58 кДа). Спектр оптического поглощения ЛО соответствует спектру флавопротеина с максимумами при 278, 390 и 465 (плечо 490) нм. Простетической группой фермента является ФАД, причем на каждую субъединицу приходится 1 молекула ФАД. Полученная субстанция ЛО гомогенна по данным электрофореза в полиакриламидном геле и по данным гель-фильтрации.

ЛО проявляет максимальную активность в отношении L-лизина (100%) и лишь в незначительной степени - в отношении его структурных аналогов L-орнитина и L-аргинина, не действует на D-изомеры аминокислот. В результате лизиноксидазной реакции выделяется альфа-кето-эпсилон-аминокапроновая кислота, аммиак и пероксид водорода. pH-оптимум каталитической активности по отношению к L-лизину 7,4, а Км=1,79±0,07 10-5 М; изоэлектрическая точка - 4,25.

В лиофилизованном виде субстанция ЛО может храниться в холодильнике 2 года практически без потери каталитической активности.

Пример 2. Субстанцию ЛО проверяли на антимикробное действие на аэробные тест-микроорганизмы при их инкубации на жидкой тиогликолевой среде в течение 3-х суток при 32,5±2,5°С в присутствии 3,0 Е/мл ЛО. Результаты приведены в табл.3.

Пример 3. Фунгицидное действие субстанции ЛО проверяли путем инкубации грибов на жидкой среде Сабуро и жидкой соево-казеиновой среде в течение 5-ти суток при 22,5±2,5°С и концентрации ЛО 3 Е/мл. Результаты приведены в табл.4.

Пример 4. Цитотоксическую активность субстанции ЛО исследовали на клетках лимфомы Беркита, полученных из Коллекции опухолевых штаммов человека РОНЦ им. Н.Н. Блохина РАМН. Клетки выращивали в среде RPMI 1640 с 25 мМ HEPES (Gibco) с добавлением 10% эмбриональной телячьей сыворотки (Gibco), 80 мкг/мл гентамипина. Для оценки цитотоксичности ЛО был использован МТТ-тест, основанный на способности дегидрогеназ живых клеток восстанавливать водорастворимую форму МТТ-реагента до голубых кристаллов формазана, растворимых в ДМСО. Оптическое поглощение окрашенных растворов ДМСО измеряли на счетчике оптической плотности Titertek Multiskan MS при длине волны 540 нм. Опухолевые клетки высевали в 96-луночные планшеты в концентрации 10 тыс. на лунку и выращивали при 37°С и 5% CO2. Через 24 часа в среду с клетками вносили ЛО в различных концентрациях и клетки инкубировали при 37°С и 5% CO2 в течение 72 часов. На основании полученных данных методом наименьших квадратов рассчитывали средне-эффективную концентрацию тестируемого вещества (IC50), минимальный критерий IC50≤10 мкг/мл. ЛО проявляет высокую и значимую цитотоксичность в культуре клеток лимфомы Беркитта человека, IC50=1,0 мкг/мл (10-4 Е/мл). Таким образом, доказано выраженное антипролиферативное действие ЛО.

Пример 5. Цитотоксическую активность субстанции ЛО исследовали на линиях клеток опухолей человека: рака толстой кишки Colon L6174T и Colo МТ, рака молочной железы MCF 7, рака яичников SCOV 3 и рака предстательной железы РС3.

Постановка экспериментов была аналогична тому, как это описано в примере 4. Использован диапазон концентраций ЛО 10-10-7 мкг/мл. Процент жизнеспособных клеток по отношению к контролю определяли через 48 часов инкубации с использованием витального красителя МТТ. Контрольными образцами служили клетки без добавления ЛО. На основании полученных данных методом наименьших квадратов рассчитывали средне-эффективную концентрацию тестируемого вещества (IC50).

ЛО обладает высоким цитотоксическим потенциалом по отношению к опухолевым клеткам различного гистогенеза, при этом более чувствительными к цитопатогенному действию ЛО были клетки рака толстой кишки Colon L6174T. В максимальной из испытанных концентраций (10 мкг/мл) ЛО вызывала практически 100% гибель клеток линии Colon L6174T, при концентрации 10-2 мкг/мл отмечалась гибель ≥70% клеток, а 50% лизис опухолевых клеток линии Colon L6174T наблюдался при воздействии ЛО в концентрации 10-4 мкг/мл (табл.5).

Помимо лимфомы Беркитта человека ЛО проявляет высокое и значимое антипролиферативное действие по отношению к другим 4-м линиям культур клеток рака толстой кишки человека Colon L6174T и Colo МТ, рака молочной железы MCF 7, рака яичников SCOV 3, рака предстательной железы РС3 человека, входящим в сигнальный набор прескрининга потенциальных противоопухолевых агентов (табл.5). ЛО оказывает цитотоксическое действие без каких-либо добавок (антиоксидантов, витаминных препаратов, иммуномодуляторов, липополисахаридов, пирогенов, противогельминтных средств и др.).

Таким образом, предлагаемый способ получения субстанции ЛО обеспечивает усиление биосинтеза, увеличение выхода на стадии выделения и очистки (67% против 8% по прототипу), получение чистого продукта, повышение экологичности процесса за счет значительного уменьшения количества сульфата аммония, используемого на стадии выделения, создание возможности масштабирования процесса за счет исключения процедуры гель-фильтрации. Полученная по предлагаемому способу субстанция ЛО обладает широким спектром биологической активности: антимикробной, фунгицидной и антипролиферативной.

Таблица 1 № ферментации Объем КЖ в конце ферментации, л Содержание ЛО в КЖ, Е/мл* 1 4,0 16,88 2 4,1 17,55 3 4,0 18,23 4 3,9 16,88 * активность измеряли при 37°

Таблица 2 Стадия очистки Общий белок, мг Общая активность, Е Удельная активность Е/мг белка при 37°С Выход, % Исходная культуральная жидкость 11000 10125 0,9 1. Очистка от пигмента в объеме с помощью QAE -А25 8000 9620 1,2 95 2. Очистка от примесей в объеме с помощью DEAE - Toyepearl 600 9113 15,2 90 3. Октил-сефароза (колонка 2×30 см) 100 8440 84,4 87 4. DEAE-Toyeperl (колонка 2×30 см) 25 6750 270,0 67

Таблица 3 Питательные среды Тест-микроорганизмы Наличие роста культуры Жидкая тиогликолевая среда Bacillus subtilis ATCC 6633 + Bacillus subtilis ATCC 6633+ЛО - Staphylococcus ATCC 6538-P + Staphylococcus ATCC 6538-P+ЛО - Pseudomonas aeruginosa ATCC 9027 + Pseudomonas aeruginosa ATCC 9027 +ЛО -

Таблица 4 Питательные среды Тест-микроорганизмы Наличие роста культуры Жидкая соево-казеиновая среда Aspergillus niger ATCC 9642 + Aspergillus niger ATCC 9642+ЛО - Жидкая среда Сабуро Aspergillus niger ATCC 9642 + Aspergillus niger ATCC 9642+ЛО -

Таблица 5 Линия клеток IC50, мкг/мл 1 Colon L6174T 1,3×10-4 2 Colo MT 5,6×10-4 3 MCF7 8,4×10-4 4 SCOV3 9,9×10-4 5 РС3 2,6×10-3

Похожие патенты RU2471866C1

название год авторы номер документа
СПОСОБ ЛЕЧЕНИЯ РАКА ТОЛСТОЙ КИШКИ 2012
  • Березов Темирболат Темболативич
  • Лукашева Елена Васильевна
  • Трещалина Елена Михайловна
  • Покровский Вадим Сергеевич
  • Аринбасарова Анна Юрьевна
  • Меденцев Александр Григорьевич
  • Барышников Анатолий Юрьевич
RU2529831C2
ПРОДУЦЕНТ ИНГИБИТОРА ВОЗБУДИТЕЛЯ БАКТЕРИАЛЬНОЙ ПЯТНИСТОСТИ ТЫКВЕННЫХ КУЛЬТУР (Acidovorax citrulli) 2013
  • Смирнова Ирина Павловна
  • Каримова Елена Владимировна
RU2535983C1
ИНГИБИТОР ВИРУСА КЛЕЩЕВОГО ЭНЦЕФАЛИТА 2011
  • Смирнова Ирина Павловна
  • Ларичев Виктор Филиппович
RU2473689C1
ШТАММ Trichoderma harzianum Rifai - ПРОДУЦЕНТ ИНГИБИТОРА ВИРУСА КОЛЬЦЕВОЙ ПЯТНИСТОСТИ ТАБАКА (Tobacco ringspot virus) 2011
  • Смирнова Ирина Павловна
  • Шнейдер Юрий Андреевич
RU2475528C2
ПРОДУЦЕНТ ИНГИБИТОРА МИКОПЛАЗМЫ (Mycoplasma hominis) 2014
  • Смирнова Ирина Павловна
  • Раковская Ирина Валентиновна
RU2569150C1
ИНГИБИТОР ВОЗБУДИТЕЛЯ БАКТЕРИАЛЬНОГО ОЖОГА ПЛОДОВЫХ КУЛЬТУР (ERWINIA AMYLOVORA) 2012
  • Смирнова Ирина Павловна
  • Каримова Елена Владимировна
  • Шнейдер Юрий Андреевич
RU2493247C1
ПРОДУЦЕНТ ИНГИБИТОРА ВИРУСА НЕКРОТИЧЕСКОЙ ПЯТНИСТОСТИ БАЛЬЗАМИНА 2010
  • Смирнова Ирина Павловна
  • Шнейдер Юрий Андреевич
RU2481392C2
РАНОЗАЖИВЛЯЮЩЕЕ СРЕДСТВО НА ОСНОВЕ ШТАММА Trichoderma harzianum Rifai 2013
  • Смирнова Ирина Павловна
  • Сёмкина Ольга Александровна
  • Кишмахова Лидия Муратовна
RU2528065C1
ИНГИБИТОР АНДИЙСКОГО ВИРУСА КРАПЧАТОСТИ КАРТОФЕЛЯ 2013
  • Смирнова Ирина Павловна
  • Шнейдер Юрий Андреевич
  • Березов Темирболат Темболатович
RU2527899C1
ПОЛИФУНКЦИОНАЛЬНАЯ ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ОСНОВЕ L-ЛИЗИН-α-ОКСИДАЗЫ ИЗ ГРИБА РОДА TRICHODERMA И СПОСОБ ПОЛУЧЕНИЯ ЭТОГО ФЕРМЕНТА 2002
  • Смирнова И.П.
  • Смирнов К.А.
  • Родькин А.А.
RU2233171C2

Реферат патента 2013 года СПОСОБ ПОЛУЧЕНИЯ СУБСТАНЦИИ L-ЛИЗИН-АЛЬФА-ОКСИДАЗЫ

Изобретениео тносится к биотехнологии и медицине, а именно к онкологи. Предложен способ получения субстанции L-лизин-альфа-оксидазы (ЛО) с использованием штамма-продуцента Trichoderma cf. aureoviride Rifai BKMF-4268D. Проводят ферментацию на содержащей источники азота, фосфата и пшеничные отруби среде. Затем осуществляют выделение и очистку фермента при следующей последовательности операций: диализ культуральной жидкости, обработка адсорбентами, осаждение примесей сульфатом аммония 20% степени насыщения, гидрофобная и ионообменная хроматография. Получают L-лизин-альфа-оксидазу, имеющую молекулярную массу 115-116 кДа, изоэлектрическую точку 4,25, оптимум рН - 7,4. Предлагаемый способ обеспечивает увеличение выхода ЛО до 67%. 5 табл., 5 пр.

Формула изобретения RU 2 471 866 C1

Способ получения субстанции L-лизин-альфа-оксидазы из гриба рода Trichoderma путем культивирования гриба на содержащей источники азота, фосфата и пшеничные отруби среде с последующим выделением и очисткой фермента, включающими осаждение примесей сульфатом аммония, диализ и ионообменную хроматографию, отличающийся тем, что биосинтез осуществляют с помощью штамма-продуцента гриба, депонированного во Всесоюзной коллекции микроорганизмов ИБФМ РАН Trichoderma cf.aureoviride Rifai BKMF-4268D, выделение и очистку проводят при следующей последовательности операций: диализ культуральной жидкости, обработка адсорбентами, осаждение примесей сульфатом аммония 20% насыщения, гидрофобная и ионообменная хроматография с получением L-лизин-альфа-оксидазы, имеющей молекулярную массу 115-116 кДа, изоэлектрическую точку 4,25, оптимум рН 7,4.

Документы, цитированные в отчете о поиске Патент 2013 года RU2471866C1

ПОЛИФУНКЦИОНАЛЬНАЯ ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ НА ОСНОВЕ L-ЛИЗИН-α-ОКСИДАЗЫ ИЗ ГРИБА РОДА TRICHODERMA И СПОСОБ ПОЛУЧЕНИЯ ЭТОГО ФЕРМЕНТА 2002
  • Смирнова И.П.
  • Смирнов К.А.
  • Родькин А.А.
RU2233171C2
KUSAKABE Н., ЕТ AL
A new antitumor enzyme, L-lysine alpha-oxidase from Trichoderma viride
Purification and enzymological properties // The Journal of Biological Chemistry, 1980, v.255, №3, pp.976-981
US 4234691 A, 18.11.1980
Смирнова И.П
и др
Технология выделения и очистки L-лизин-α-оксидазы
- Биотехнология, 2010, №6, с.47-54.

RU 2 471 866 C1

Авторы

Березов Темирболат Темболатович

Лукашева Елена Васильевна

Трещалина Елена Михайловна

Аринбасарова Анна Юрьевна

Меденцев Александр Григорьевич

Киселевский Михаил Валентинович

Покровский Вадим Сергеевич

Боронин Александр Михайлович

Барышников Анатолий Сергеевич

Даты

2013-01-10Публикация

2011-10-24Подача