СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО НИКЕЛЕВОГО ПОКРЫТИЯ С КВАЗИКРИСТАЛЛИЧЕСКИМИ ЧАСТИЦАМИ Российский патент 2013 года по МПК C25D15/00 

Описание патента на изобретение RU2478739C1

Изобретение относится к способу получения квазикристаллических материалов, в частности электрохимических композиционных покрытий состава AlCuFe на основе никеля, которые могут использоваться благодаря своим уникальным свойствам для повышения износостойкости инструмента, снижения трения в подшипниках, применяться в качестве защитных несмачиваемых покрытий в различных отраслях промышленности, в частности, для предотвращения обледенения проводов линий электропередач.

Известны различные способы получения квазикристаллических материалов - пленок состава Al-Cu-Fe. Так, методом послойного магнетронного распыления на переменном токе получают пленки толщиной 300 нм (Klein Т., Symko O.G., // Appl.Phys. Lett. 1994. V.64. №4. P.431), методом электроннолучевого испарения из одного сплавленного катода - пленки 400-900 нм (Yoshioka A., Edagawa K., Kimura K., Takeuchi Sh. // Jpn. J. Appl. Phys. 1995. V.34. №3. P.1606). Для получения квазикристаллической фазы в пленках, полученных этими методами, необходим последующий отжиг, без которого квазикристаллические пленки образуются лишь при распылении на нагретую подложку (Eisenhammer Т., Trampert A. // Phys. Rev. Lett. 1997. V.78. №2. P.262).

Толстые пленки толщиной 50 мкм были получены при распылении с помощью СО2 лазера с последующим лазерным отжигом (Audebert F., Colaco R., Villar R. et al // Scripta Mater. 1999. V.40. №5. P.551).

Более совершенный способ получения квазикристаллических пленок заключается в послойном нанесении материалов методом катодного распыления в ячейке Пенинга (патент РФ №2329333 С23С 14/06, оп. 20.07.2008). Количество секций и материалы катодов ячейки выбирают в соответствии с составом квазикристаллической пленки. Затем наносят защитное покрытие Аl2O3 и проводят вакуумный отжиг. При этом получают квазикристаллические пленки стабильного состава, обладающие высокими технологическими свойствами: электропроводностью, теплопроводностью и твердостью.

Известные способы получения квазикристаллических пленок технологически сложны, трудоемки и требуют дорогостоящего специального оборудования. Поэтому решение этой проблемы состоит в разработке электрохимического способа получения композиционных покрытий на основе квазикристаллов, так как этот способ является технологически простым и дешевым.

Композиционные электрохимические покрытия находят широкое распространение в различных отраслях промышленности, о чем свидетельствует многочисленная научная и патентная литература [Молчанов В.Ф., Аюпов Ф.А., Вандышев В.А., Дзыцюк В.М. Комбинированные электрохимические покрытия. К.: Техника, 1976, 67 с.; Сайфуллин Р.С. Композиционные покрытия и материалы. М.: Химия. 1977. 270 с.; Кузнецова Е.В. //ЖПХ. 1993. Т.66. №5. С.1155-1158; Целуйкин В.И., Соловьева Н.Д. // ЖПХ. 2008. Т.81. №7. С.1106-1107; Чулованец С.А., Парфенов В.И. // ЖПХ. 2007. Т.80. №6. С.982; Тихонов К.И., Буркат и др. //ЖПХ. 2007. Т 80. №7. С.1113 ; авторское свидетельство СССР №1694710. C25D 15/00. 1991; патент РФ №2329337. C25D 15/00. 2008; патент РФ №2339746. C25D 15/00. 2008; патент РФ №2080422. C25D 3/56. 2002; патент РФ №2149927. C25D 3/56; патент РФ №2096535. C25D 15/0]. Композиционные электрохимические покрытия наносят из электролитов - суспензий, модифицированных добавками высокодисперсных порошков, которые при электроосаждении заращиваются металлом, закрепляясь на поверхности изделия (катода) в металлической матрице. В качестве веществ дисперсной фазы применяют бориды, карбиды, силициды, сульфиды, оксиды, графиты, фуллерены, алмазный порошок и т.д., а электролитами служат стандартные электролиты: никелирования, хромирования, меднения, цинкования и т.д. Для обеспечения седиментационной устойчивости дисперсной фазы в электролите применяют различные приемы: осуществляют перемешивание электролита; используют ПАВ [Авторское свидетельство СССР №1636481, C25D 15/00, 1991]; применяют ПАВ с последующей активацией электролита-суспензии в специальном аппарате - дезинтеграторе [Патент РФ №2202007. C25D 15/00. 2003]; обрабатывают электролит - суспензию ультразвуком [Патент РФ №2283373. C25D 15/00. 2006]; используют очищенные и ультрадисперсные порошки [Патент РФ №2156838. C25D 15/00. 2000]; циклически изменяют скорость электролита - суспензии в межэлектродном пространстве в ходе электролиза [Патент РФ №2138583. C25D 15/00. 1999]. Однако литературные данные, касающиеся использования квазикристаллического порошка для получения композиционных электрохимических покрытий, весьма ограничены.

Наиболее близким по технической сущности и достигаемому результату является известный электрохимический способ получения композиционных квазикристаллических покрытий, принятый за прототип (патент США №7309412. 2007). Этот способ заключается в электроосаждении квазикристаллического порошка состава Аl65Cu23Fe12 с размером частиц менее 20 мкм из сульфатного электролита никелирования с концентрацией никеля 5,8 г/л и добавкой гипофосфита натрия на подложку из алюминиевого сплава Аl-3004. Концентрация квазикристаллического порошка в электролите составляет 77 г/л, плотность тока в ходе электролиза изменяют ступенчато с 2,4 до 1,2 А/дм2, а температуру электролита поддерживают 33-50°С. При этом в качестве анода применяют платинированный титан, а покрываемый алюминиевый образец (катод) вращают со скоростью 3 об/мин. Полученное этим способом покрытие имеет толщину 25 мкм, а содержание квазикристаллов в нем составляет около 50%. Угол соприкосновения водных капель воды с покрытием превышает 105°, а коэффициент трения квазикристаллического покрытия составляет 0,2 (для непокрытого алюминиевого сплава - 0,75-0,85). Коэффициент трения и контактный угол воды не изменяются для термически обработанных квазикристаллических покрытий при температуре 425°С в течение 4 часов в бескислородной атмосфере (аргоне). Эти характеристики являются наиболее важными для работоспособности покрытия.

Недостатками прототипа являются: сравнительно высокая рекомендуемая температура электролиза 33-50°С, повышающая коррозионную активность электролита; вращение покрываемого образца (катода), усложняет конструкцию гальванического оборудования; использование платинированного титана в качестве анодного материала приводит к существенному удорожанию процесса электроосаждения квазикристаллического порошка. Кроме того, в известном способе не приводится состав электролита никелирования и вводится в электролит фосфит натрия, обычно используемый при химическом никелировании.

Задачей предлагаемого изобретения является упрощение электрохимического способа получения несмачиваемых композиционных никелевых покрытий с содержанием квазикристаллических частиц 30-42%, в менее коррозионноактивных условиях электролиза.

Техническим результатом является повышение гидрофобности покрытия.

Для этого предложен способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами, включающий введение в электролит никелирования квазикристаллического порошка состава AlCuFe и нанесение покрытия на поверхность изделий, при этом электроосаждение покрытия осуществляют при температуре 18-22°С и перемешивании электролита в присутствии неионогенных поверхностно-активных веществ (ПАВ) ОС-20 или синтанола АЛМ-10 с использованием никелевых анодов при следующем соотношении компонентов, г/л:

NiSO4·7H2O - 25-30,

NH4Cl - 28-30, Na2SO4 - 16-20,

ПВА - 0,013-0,014,

с концентрацией квазикристаллического порошка не выше 70 г/л,

при этом средний размер частиц квазикристаллического порошка составляет 6,0 мкм.

Кроме того, проводят магнитное перемешивание электролита.

Предлагаемый способ осуществляют в обычной гальванической ячейке при температуре 18-22°C с использованием никелевых анодов, а для обеспечения седиментационной устойчивости квазикристаллического порошка в электролите применяют перемешивание электролита магнитной мешалкой и неионогенных поверхностно-активных веществ: синтанол АЛМ-10 (смесь полиоксиэтиленгликолевых эфиров синтетических первичных высших жирных спиртов фракций С12-C14, ТУ 6-14-864-88) или ОС-20 (смесь полиоксиэтиленгликолевых эфиров высших жирных спиртов, ГОСТ 10730-82).

Электролит никелирования готовят следующим образом: в емкости, наполненной горячей дистиллированной водой, растворяют рецептурное количество сульфата никеля, сульфата натрия и хлорида аммония. Полученный электролит обрабатывают активированным углем, фильтруют и переливают в гальваническую ячейку в количестве 100 мл. В этот объем электролита при включенной магнитной мешалке вводят требуемые количества квазикристаллического порошка со средним размером частиц 6 мкм и поверхностно-активного вещества. Используемый квазикристаллический порошок состава Al65Cu22Fe13 получают по технологии, описанной в патенте РФ №2244761. По этой же технологии были получены порошки состава Al63,5Cu24,5Fe12 Al70Cu20,3Fe9,7, Al65Cu22Fe13.

Исходную смесь порошков берут при соотношении алюминия, меди и железа, непосредственно соответствующем области существования квазикристаллической фазы сплава Al-Cu-Fe. Проводят перемешивание исходной смеси порошков на воздухе в среде жидкого испаряющегося пластификатора до получения однородной смеси и повышения ее вязкости. Затем осуществляют нагрев в бескислородной атмосфере и выдержку. Процесс нанесения покрытия на медную подложку ведут при катодной плотности тока 1-2 А/дм2.

В качестве параметров, характеризующих свойства полученных покрытий, определялись содержание квазикристаллической фазы в весовых процентах и смачиваемость образца дистиллированной водой, которая определялась по форме капли воды, нанесенной на поверхность покрытия.

На фигуре 1 показана зависимость интенсивности рентгеновского излучения от угла дифракции на образце электрохимического композиционного никелевого покрытия с квазикристаллическими частицами состава Al65Cu22Fe13, полученная на установке D8 Advance фирмы «Брукер». На той же фигуре приведена табличная штрих-рентгенограмма квазикристаллической фазы. Индицированы пики, относящиеся к Ni и квазикристаллу.

На фигуре 2 представлена фотография капли дистиллированной воды на поверхности медной подложки. Размер капли ~1.5 мм. Медь является материалом с умеренной смачиваемостью. Угол смачиваемости (в данном случае 64.5°±1°) определялся по компьютерному изображению с помощью аппроксимации формы капли сферой с известным центром и радиусом.

На фигуре 3 представлена фотография такой же капли на поверхности тефлона, который известен как материал с предельно низкой смачиваемостью. Угол смачиваемости, который определялся так же, как и для меди, составляет в данном случае 108.5±1°.

На фигуре 4 представлена фотография капли дистиллированной воды на поверхности несмачиваемого композиционного квазикристаллического покрытия. В этом случае капля представляет собой слегка искаженную сферу, и угол смачиваемости не определяется. Следует отметить, что, в отличие как от меди и тефлона, так и от покрытий с более низким содержанием квазикристалла, капля воды скатывается с несмачиваемого покрытия при наклоне образца.

В таблице приведены технологические параметры процесса и характеристики полученных покрытий для серии образцов

Из данных, приведенных в таблице, видно, что содержание квазикристаллов в композиционном покрытии и его качество зависят от состава электролита и условий электролиза. Так, увеличение концентраций сульфата никеля, сульфата натрия и хлорида аммония, а также повышение температуры электролита, среднего размера частиц квазикристаллического порошка и его концентрации выше 70 г/л приводят к снижению содержания квазикристаллов в композиционном покрытии до 12,2-20,0 % и ухудшению его качества. Композиционные квазикристаллические покрытия, получаемые по предлагаемому способу, обладают хорошей адгезией с медной основе, не разрыхляются и не смачиваются.

Таким образом, предлагаемый способ позволяет получать несмачиваемые композиционные никелевые покрытия с квазикристаллическими частицами с содержанием квазикристаллов 30-42 вес.%, в менее коррозионноактивных условиях электролиза с одновременным упрощением его реализации за счет использования существующего гальванического оборудования и удешевлением в результате замены платинированных анодов на обычные никелевые. Такие покрытия могут применяться для повышения износостойкости инструмента, снижения трения в подшипниках, применяться в качестве защитных несмачиваемых покрытий в различных отраслях промышленности, в частности, для предотвращения обледенения проводов линий электропередач.

Похожие патенты RU2478739C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ГАЛЬВАНИЧЕСКОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ, СОДЕРЖАЩЕГО НАНОАЛМАЗНЫЕ ПОРОШКИ 2012
  • Полушин Николай Иванович
  • Журавлев Владимир Васильевич
  • Маслов Анатолий Львович
  • Степарева Нина Николаевна
RU2487201C1
Способ получения электрохимического композиционного никель-алмазного покрытия 2017
  • Буркат Галина Константиновна
  • Долматов Валерий Юрьевич
  • Руденко Дмитрий Владимирович
RU2676544C1
СПОСОБ ПОЛУЧЕНИЯ БЕСПОРИСТОГО КОМПОЗИЦИОННОГО ПОКРЫТИЯ 2019
  • Орыщенко Алексей Сергеевич
  • Марков Михаил Александрович
  • Красиков Алексей Владимирович
  • Быкова Алина Дмитриевна
  • Беляков Антон Николаевич
RU2713763C1
Способ получения композиционного электрохимического покрытия на стали 2015
  • Фукс Софья Лейвиковна
  • Пинаева Людмила Николаевна
RU2618679C1
Способ и устройство с вращающимся магнитом для электрохимической металлизации магнитных порошков 2018
  • Бахтияров Антон Велитович
  • Степанов Геннадий Владимирович
  • Стороженко Павел Аркадьевич
RU2684295C1
ЭЛЕКТРОЛИТ ДЛЯ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НИКЕЛЕВЫХ ПОКРЫТИЙ 2010
  • Целуйкин Виталий Николаевич
  • Василенко Екатерина Александровна
  • Яковлев Андрей Васильевич
  • Неверная Ольга Геннадьевна
  • Целуйкина Галина Васильевна
  • Канафьева Ольга Александровна
RU2448203C1
Способ изготовления алмазного режущего инструмента с металлической гальванической связкой никель-хром 2022
  • Поляков Николай Анатольевич
  • Малий Иван Владимирович
RU2785208C1
ЭЛЕКТРОЛИТ ДЛЯ ОСАЖДЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ НИКЕЛЯ 2008
  • Целуйкин Виталий Николаевич
  • Соловьева Нина Дмитриевна
  • Целуйкина Галина Васильевна
RU2352695C1
Электролит для осаждения комбинированных электрохимических покрытий на основе никеля 1980
  • Агеенко Нина Сафроновна
  • Гаврилко Виктор Петрович
  • Жуков Михаил Федорович
  • Корнилов Александр Александрович
SU954530A1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА КВАЗИКРИСТАЛЛИЧЕСКОГО МАТЕРИАЛА 2006
  • Каблов Евгений Николаевич
  • Абузин Юрий Алексеевич
  • Гончаров Игорь Евгеньевич
  • Ефимочкин Иван Юрьевич
RU2353698C2

Иллюстрации к изобретению RU 2 478 739 C1

Реферат патента 2013 года СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО НИКЕЛЕВОГО ПОКРЫТИЯ С КВАЗИКРИСТАЛЛИЧЕСКИМИ ЧАСТИЦАМИ

Изобретение относится к области гальванотехники и может быть использовано для повышения износостойкости инструмента, снижения трения в подшипниках и в качестве защитных несмачиваемых покрытий в различных отраслях промышленности, в частности, для предотвращения обледенения проводов линий электропередач. Способ включает введение в электролит никелирования квазикристаллического порошка состава AlCuFe и нанесение покрытия на поверхность изделий, при этом электроосаждение покрытия осуществляют при температуре 18-22°С и перемешивании электролита в присутствии неионогенных поверхностно-активных веществ (ПАВ) ОС-20 или синтанола АЛМ-10 с использованием никелевых анодов при следующем соотношении компонентов, г/л: NiSO4·7H2O 25-30; NH4Cl 28-30; Na2SO4 16-20; ПАВ 0,013-0,014; квазикристаллический порошок - не выше 70, при этом средний размер частиц квазикристаллического порошка составляет 6,0 мкм. Технический результат: удешевление и упрощение получения несмачиваемых композиционных квазикристаллических покрытий с содержанием квазикристаллов 30-42% в менее коррозионноактивных условиях электролиза. 1 з.п. ф-лы, 1 табл., 4 ил.

Формула изобретения RU 2 478 739 C1

1. Способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами, включающий введение в электролит никелирования квазикристаллического порошка состава AlCuFe и нанесение покрытия на поверхность изделий, отличающийся тем, что электроосаждение покрытия осуществляют при температуре 18-22°С и перемешивании электролита в присутствии неионогенных поверхностно-активных веществ (ПАВ) ОС-20 или синтанола АЛМ-10 с использованием никелевых анодов при следующем соотношении компонентов, г/л:
NiSO4·7H2O 25-30 NH4Cl 28-30 Na2SO4 16-20 ПАВ 0,013-0,014 квазикристаллический порошок не выше 70,


при этом средний размер частиц квазикристаллического порошка составляет 6,0 мкм.

2. Способ по п.1, отличающийся тем, что проводят магнитное перемешивание электролита.

Документы, цитированные в отчете о поиске Патент 2013 года RU2478739C1

US 7309412 В2, 18.12.2007
RU 2007144836 A, 10.06.2009
СПОСОБ ПОЛУЧЕНИЯ КВАЗИКРИСТАЛЛИЧЕСКИХ ПЛЕНОК НА ОСНОВЕ АЛЮМИНИЯ 2006
  • Михеева Маргарита Николаевна
  • Теплов Алексей Аркадьевич
  • Шайтура Дмитрий Сергеевич
  • Ольшанский Евгений Дмитриевич
  • Долгий Дмитрий Иосифович
RU2329333C1

RU 2 478 739 C1

Авторы

Михеева Маргарита Николаевна

Круглов Виталий Сергеевич

Цетлин Михаил Борисович

Конарев Александр Андреевич

Абузин Юрий Алексеевич

Платонов Герман Леонидович

Шайтура Дмитрий Сергеевич

Головкова Екатерина Анатольевна

Теплов Алексей Аркадьевич

Даты

2013-04-10Публикация

2011-12-13Подача